MATH 226: Notes on Assignment 12

3.5 Repeated Eigenvalues

Practice Problems: 1*, 3*, 5*, 7*,9*

3-2
A“’\’:( 1 -1-,\)

implies det(A — AI) = A2 —2X 4 1 = (A — 1)2. Therefore, A = 1 is the only eigenvalue. Now

A = 1 implies
2 —4
a-n=(2 73).

()
xﬂt):e'(?)

is one solution. Next, we need to look for a solution w of

(A—I)w:(?).

Plugging in for A — I, this equation becomes

(G-
(1)

is a solution of this equation. Therefore,

xz(l)=lf>'(f)+9'(é)

is also a solution of our original system. Therefore, the general solution of the system is

w=a(2)rafe(2)+e(2)]):

Therefore,

is an eigenvector for A = 1 and

We see that

Nonzero solutions grow as t — oc.



Cf-3/2-x 1
”‘_”—( 14 _1;2_.1\)
implies det{4 — M) = A2+ 2A + 1 = (A + 1)2. Therefore, A = —1 is the only eigenvalue.

Now A = —1 implies
(=121
A=A = ( —1/4 1/2 )

()
xl{t}ze_*( %)

is one solution. Next, we need to look for a solution w of

(A+J}w=(f)_

Plugging in for 4 + I, this equation becomes

(jﬁ Ué)w:(?)‘

Therefore,

is an eigenvector for A = —1 and

We see that

is also a solution of our original svstem. Therefore, the general solution of the system is

x(t}zcle_:(f)+£‘2[ﬂ8_‘(§)+e_:(g)]_

The solutions approach the origin as ¢ — =.



“1-Xx  -1/2
A—M=( 5 _3_}‘)

implies det{A — AT) = A + 4X + 4 = (A + 2)%. Therefore, A = —2 is the only eigenvalue.

Now A = —2 implies
1 -1/2
A=Al = ( 9 1 )

()

Therefore,

15 an elgenvector for A = —2 and

1s one solution. Next, we need to look for a solution w of

{A+‘2I}w=(;).

Plugging in for A + 21, this equation becomes

We see that

xot) = te ( ; ) +e ( [l] )

15 also a solution of our original system. Therefore, the general solution of the system 1s
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7. The characteristic equation is (A + 3) = 0. Therefore, the only eigenvalue is A = —3. A
corresponding elgenvector is given by
. 1
A

xi(t) =™ ( } )

15 one solution of the system. Next, we need to look for a solution w of

and

{A+3I}w=(i)_

Plugging in for A + 3[, this equation becomes

(5 5)=(1)

We see that

15 a solution of this equation. Therefore,

xa(t) = te™¥ ( 1‘- ) +e ¥ ( léd )

15 also a solution of our original system. Therefore, the general solution of the system 1s

ﬂﬂ=q€“(i)+m%am(})+é&(lﬁ)]

The initial condition implies that ¢) = 2 and e3 = 4. Therefore, the solution of the IVP 1s

I+4ey _
x[t}=(2+4t)e 3
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0. The characteristic equation is (A — 1/2)2 = (. Therefore, the only eigenvalue is A = 1/2.
A corresponding eigenvector is given by

()
xl(g)=e*ﬂ( ‘: )

is one solution of the system. Next, we need to look for a solution w of
1 -1
(-2)>-(7)
Plugging in for A — éf, this equation becomes

(3 3)=(71)

()

1s a solution of this equation. Therefore,

xg(t) = te*ﬂ( _} ) +etf? ( —20,-’3 )

is also a solution of our original system. Therefore, the general solution of the system is

x(t) =cle*ﬂ( _i ) +c [te‘ﬁ ( _: )+e*f2( _20’(3 )] .

The initial condition implies that ¢y = —2 and e = —3/2. Therefore, the solution of the

IVP 1s 3.3
+3¢

x(t) = 3 )e'ﬂ.
() (—2—51:

and

We see that
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