MATH 226
Notes on Assignment 6

2.4 Differences Between Linear and Nonlinear Equations
Practice Problems 2.4: 1, 2,4, 5, 7, 8, 14, 15, 16, 19%, 21%, 25, 27

1. Rewriting the equation as
, Int y 2t

t—3° t-3
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<3.

2. Rewriting the equation as

Y+

- ="

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<4.

4. Rewriting the equation as
2t 3t?

11—’ 1_p
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—00 <t < —2.

Y+

5. Rewriting the equation as
2t 3t?

11—l 1
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
-2 <t <2

Y+

7. Using the fact that

= L=y and f, =—L
2t + 5y YT (2t + 5y)2’

f

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as 2t + 5y # 0.

8. Using the fact that

Y
(1—2—y2)1/2

f=(-£—y) and f,—-

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as t? + 3% < 1.



14.(a) First, it is clear that y,(2) = —1 = y»(2). Further,

, —t+ (2441 -t)2  —t4[(t—2)

and 2 2\1/2
(22—t
y’2= (2 ) *

The function ¥, is a solution for ¢ > 2. The function y, is a solution for all £.

(b) Theorem 2.4.2 requires that f and df/dy be continuous in a rectangle about the point
(to, o) = (2,—1). Since f, is not continuous if ¢ < 2 and y < —1, the hypotheses of Theorem
2.4.2 are not satisfied.

(c) If y = ct + ¢*, then

—t 4+ [(t+ 2022 —t+ (£ + dct + 42) V2
Y =c= -
2 2 '

Therefore, y satisfies the equation for t > —2e¢.
15. The equation is separable, ydy = —4tdt. Integrating both sides, we conclude that
y?/2 = —2t> + y3 /2 for yy # 0. The solution is defined for y3 — 4t* > 0.

16. The equation is separable and can be written as dy/y*> = 2tdt. Integrating both sides,
we arrive at the solution y = yo/(1 — yot®). For yo > 0, solutions exist as long as t> < 1/yo.
For y, < 0, solutions exist for all £.
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Ifyo > 0, then y — 3. If yo =0, then y = 0. If yo < 0,
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If yo > 9, then y — oco. If yp <9, then y — 0.

25. Let y = y1 + v, then ¥’ + p(t)y = y; + v + p(t) (1 + ¥2) = yi +p(t)y1 +y5 + p(t)y2 = 0.

27. The solution of the initial value problem y’ 4+ 2y = 1 is y = 1/2 4 ce~%. For y(0) = 0,
we see that ¢ = —1/2. Therefore, y(t) = (1 — ™) for 0 < ¢ < 1. Then y(1) = 3(1 —e72).
Next, the solution of 3’ +2y = 0 is given by y = ce™?. The initial condition y(1) = 1(1—e~2)
implies ce™? = 1(1—e~?). Therefore, ¢ = 3(e*—1) and we conclude that y(t) = %(e?2 —1)e™
fort > 1.



2.5 Autonomous Equations and Population Dynamics
Practice Problems 2.5: 2, 3, 6,9, 10

2.(a) Below we sketch the graph of f forr =1 = K.

r=1, K=1
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The eritical points occur at y* = 0, K. Since f'(0) > 0, y* = 0 is unstable. Since f'(K) < 0,
y* = K is asymptotically stable.

(b) We calculate y”. Using the chain rule, we see that

roo(8)-]

We see that 3 = 0 when ' = 0 (meaning y = 0, K') or when In(K/y) — 1 = 0, meaning
y = K/e. Looking at the sign of y” in the intervals 0 < y < K/e and K/e <y < K, we
conclude that y is concave up in the interval 0 < y < K/e and concave down in the interval
Kle<y < K.

3.(a) Using the substitution u = In(y/K) and differentiating both sides with respect to ¢,
we conclude that ' = y'/y. Substitution into the Gompertz equation yields v’ = —ru. The
solution of this equation is u = uge™". Therefore,

% = exp[In(yo/K)e ™).

(b) For K =80.5 x 10°, yo/K = 0.25 and r = 0.71, we conclude that y(2) =~ 57.58 x 10°.
(¢) Solving the equation in part (a) for ¢, we see that

r
Plugging in the given values, we conclude that 7 = 2.21 years.



6.(a) The equilibrium points are y* = 0,1. Since f'(0) = a > 0, the equilibrium solution
y* = 0 is unstable. Since f’(1) = —a < 0, the equilibrium solution y* = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by

Yo _ Yo
et —yoe=ot +yp et 4 yp(l —e o)

y(t) =

We see that lim, o, y(t) = 1.

9.(a) Since the critical points are z* = p, ¢, we will look at their stability. Since f'(z) =
—aq—ap+2azx?, we see that f'(p) = a(2p* —q—p) and f'(q) = a(2¢*> —q—p). Now if p > ¢,
then —p < —gq, and, therefore, f'(q) = a(2¢> — ¢ — p) < a(2¢®> — 2q) = 2aq(q — 1) < 0 since
0 < g < 1. Therefore, if p > q, f'(qg) < 0, and, therefore, 2* = g is asymptotically stable.
Similarly, if p < g, then z* = p is asymptotically stable, and therefore, we can conclude that
z(t) — min{p, ¢} as t — oc.

The equation is separable. It can be solved by using partial fractions as follows. We can

rewrite the equation as
1/(q — _
( [la=p) Y q))dx=adt’
p—I q—

which implies

In = =(p—q)at + C.
The initial condition zy = 0 implies C' = In |p/q|, and, therefore,
q9(p —z)
Inf——=| = (p—q)at.
pa—a)| P77

Applying the exponential function and simplifying, we conclude that

pa(e9 — 1)
pe(P—Q)at —q ’

z(t) =

(b) In this case, z* = p is the only critical point. Since f(z) = a(p — z)? is concave up,
we conclude that z* = p is semistable. Further, if o5 = 0, we can conclude that x — p as
t — oo. The phase line is shown below.

I=p -

This equation is separable. Its solution is given by

2(t) = p’at

S opat+1°




10.(a) The critical points occur when a — y? = 0. If a < 0, there are no critical points. If
a = 0, then y* = 0 is the only critical point. If @ > 0, then y* = ++/a are the two critical
points.

(b) We note that f’(y) = —2y. Therefore, f’(y/a) < 0 which implies that y/a is asymptoti-

cally stable; f'(—y/a) > 0 which implies —+/a is unstable; the behavior of f’ around y* =0
implies that y* = 0 is semistable. The phase lines are shown below.

a<0 ' a=0 ' a>0




