MATH 226: Notes on Assignment 17
Section 6.7 Defective Matrices: 1, 3, 9
Problem 1

A= (le :g) has characteristic polynomial A\* — 2\ +1 = (A — 1)?

so 1 is an eigenvalue of algebraic multiplicity 2. Examining (A — A\)v = <Z> , we have

(3 =9 | Z) which row reduces to <1 =3 | b

0 0 | a— 36) which has a solution if a—3b =0

Hence geometric multiplicity of A = 1 is 1. To get a bona fide eigenvector v, let a =

0,b =0 so we can take v = G

To obtain a generalized eigenvector w with (A — AI)w = v, we take a = 3,b = 1 which
yields

1 -3 | 1 B P _ (1
(O 0 | O) so wi = 3wy + 1. Wecantakewg—()yleldmgw_(O)

We then have two linearly independent solutions of X' = AX:

elv = ¢! (i’) and te'v + e'w = te! (i’) +é (é)

3e! 3tel + et>

One fundamental matrix is ( ot tot

Many other correct answers are possible. In this case,

AL _ e'(3t+1) —9te!
tet (=3t + 1)e!



Problem 3
1 1 1
A= 2 1 —1| has characteristic polynomial \* — +6\* + 12\ — 8 = (\ — 2)*
-3 2 4
-1 1 1
so 1 is an eigenvalue of algebraic multiplicity 3. Thus A —2/ = | 2 —1 —1| which
-3 2 2
1 00
row reduces to |0 1 1| so the geometric multiplicity is 1. For an eigenvector v, we
000
0
have v; = 0,v9 = —v3 so we can choose v = | —1 . More generally, we have
1

-1 1 1 | a 1 00 | a+b

2 —1 —1 | b| rowreducingto |0 1 1 | 2a+0b

-3 2 2 | c 000 | —a+b+c
To get the first generalized eigenvector w, set a = 0,b = —1, ¢ = (the components of v);

-1
This gives w; = —1,wy = —1 — w3 and free choice of w3. Let w3 =0sow= | —1]. To
0
get the second generalized vector u so (A — 2/)u =w, set a = —1,b0 = —1,¢ = 0. This
-2
yields u; = —2,us = —3 — ug so we can take uz =) and obtain u = | =3 |. A set of three
0

. . . 2
linearly independent solutions are e*v, tev+e”w, and Le*v +te?'w + e*'u

We can write a fundamental matrix as e (V tv+w %V +tw + u)

or, in expanded form,

0 0t+-1 05 —t—2 0o -1 —t—2
-1 —t—1 L —p-3|=e*|-1 —t—1 -5 —t-3
1 t L4 0t+0 1t £

Other correct fundamental matrices are possible. In this case, the matrix exponential is

—e?l(t — 1) te?t te?t
At | —te®t(t—4) P (tP—2t42) te2t (1—2)
€ 2 ) 2
te?t (t—6) —te?t(t—4)  —eP (1P —4t—2)

2 2 2



Problem 9

A= <411 :i) has characteristic polynomial A* — +6X + 9 = (X + 3)?

so -3 is an eigenvalue of algebraic multiplicity 2. Examining (A — A\I)v = (Z) , we have

4 -4 | a . 4 -4 | a . o B
< 4 —4 | b) which row reduces to <O 0 | b— a) which has a solution if a— = b
Hence geometric multiplicity of A = —3 is 1. To get a bona fide eigenvector v, let

a=0,b=0so we can take v = G)

To obtain a generalized eigenvector w with (A — AI)w = v, we take a = 1,b = 1 which
yields

<§ _04 I é) so 4wy = 4wy + 1. We can take wy = 0 yielding w = <1(/)4>

We then have two linearly independent solutions of X' = AX:

o3y — G) and te=3ty & e~tw — o3t G) Y <1é4>

The general solution is Ce 3'v + Cy (te3'v + e73'w) whose value at t = 0 is Cyv + Cow

To make the value at 0 equal to we need 1C] + (1/4)Cy = 7,1C; + 0Cy = 1. Thus

7
1 9
C; =1 and Cy = 24. The solution is

o (1240 £ 24(1/4)) | (7 + 248
1424t +0 1+ 24t

0 1 2 3 4 5 6 7 0 1 2 3

t

Trajectory in x1, Xs space Graph of x1 vs t



MATH 226: Notes on Assignment 17
7.1 Autonomous Systems and Stability.

Practice Problems: 1*, 2*, 4*, 6*, 8*, 23, 24, 25, 26

1.(a) —2y +zy = 0 implies y(—2 +x) = 0 implies z = 2 or y = 0. Then, x + 42y = 0 implies
z(1 4+ 4y) = 0 implies £ = 0 or y = —1/4. Therefore, the critical points are (2, —1/4) and
(0,0).

(b)
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(¢) The critical point (0,0) is a center, therefore, stable. The eritical point (2, —1/4) is a
saddle point, therefore, unstable.

2.(a) 1+ 5y = 0 implies y = —1/5. Then, 1 — 6% = 0 implies x = +1//6. Therefore, the
critical points are (—1/4/6,—1/5) and (1/4/6,—1/5).

(b)

U ! L
B T

(¢) The critical point (—1/4/6, —1/5) is a saddle point, therefore, unstable. The critical point
(1/4/6,—1/5) is a center, therefore, stable.



4.(a) The equation —(z — y)(4 — x — y) = 0 implies z — y = 0 or = + y = 4. The equation
—z(2+y) = 0 implies £ = 0 or y = —2. Solving these equations, we have the critical points
(0,0), (0,4), (=2, —2), and (6, —2).

(b)

(¢) The critical point (0,0) is an asymptotically stable spiral point. The critical point (0,4)
is a saddle point, therefore, unstable. The critical point (—2, —2) is a saddle point, therefore,
unstable. The eritical point (6, —2) is a saddle point, therefore, unstable.

(d) For (0,0), the basin of attraction is bounded below by the line y = —2, to the right by
a trajectory passing near the point (5,0), to the left by a trajectory heading towards (and
then away from) the unstable critical point (0,4), and above by a trajectory heading towards
(and then away from) the unstable critical point (0,4).



6.(a) The equation (2—z)(y—z) = 0 implies z = 2 or z = y. The equation y(2—z—z?) =0
implies y = 0 or x = —2 or £ = 1. The solutions of those two equations are the critical
points (0,0), (2,0), (=2, —2), and (1,1).

(b)
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(c) The critical point (0,0) is a saddle point, therefore, unstable. The critical point (2,0)
is also a saddle point, therefore, unstable. The critical point (—2, —2) is an asymptotically
stable spiral point. The critical point (1,1) is also an asymptotically stable spiral point.

(d) For (—2,—2), the basin of attraction is the region bounded above by the z-axis and to
the right by the line z = 2. For (1, 1), the basin of attraction is the region bounded below
by the z-axis and to the right by the line = = 2.



8.(a) The equation £(2—z—y) = 0 implies 2 = 0 or z+y = 2. The equation (1—y)(2+z) =0

implies y = 1 or z = —2. The solutions of those two equations are the critical points (0, 1),
(1,1), and (—2,4).
(b)
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(¢) The critical point (0, 1) is a saddle point, therefore, unstable. The critical point (1,1) is
an asymptotically stable node. The critical point (—2,4) is an unstable spiral point.

(d) For (1,1), the basin of attraction is the right half plane.

23. We compute:

B =%t~ 5) = F(4(t - 5), 6t ~ ) = F(®,¥) = Flz.)
and dl  dy
O = W= ) = G0l - ). w(t - ) = F(#, %) = Gz, )

Therefore, ®(t), U(t) is a solution for a + s <t < 5 + s.

24. Let Cp be the trajectory generated by the solution z = ¢y(t), y = () with ¢o(te) = o,
Yo(to) = yo and let C; be the trajectory generated by the solution z = ¢,(t), y = ¥, (t)
with ¢1(t1) = xo, ¥1(t1) = Y. From problem 23, we know that ®,(t) = ¢,(t — (to — t1)),
‘171(1'} = ’(,bl (t — (tg — t1)) is a solution. Further, (131 (tg) = {J!'Jl(tl) = To and ‘IH{tg) = Up. Then,
by uniqueness, ¢g(t) = ®4(t) and vy(t) = P1(t). Therefore, the trajectories must be the
same.

25. If we assume that a trajectory can reach a critical point (zg,7p) in a finite length of
time, then we would have two trajectories passing through the same point. This contradicts
the result in problem 24.

26. Since the trajectory is closed, there is at least one point (zg,yg) such that ¢(ty) = =g,
Y(to) = yo and a number T' > 0 such that ¢(tg + T) = xq, U(tg + T) = yo. From problem
23, we know that ®(t) = ¥(t + T), VU(t) = (t + T) will also be a solution. But, then
by uniqueness ®(t) = @(t) and ¥(t) = ¥(t) for all t. Therefore, ¢(t + T) = ¢(t) and
¥(t + T) = 1(t) for all t. Therefore, the solution is periodic with period T
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