MATH 226: Notes on Assignment 11

3.4 Complex Eigenvalues
Practice Problems: 1*, 3*, 5*, 8* 13*, 15*
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Therefore, the eigenvalues are given by A =14 2i. Now, Ay = 1 + 2i implies
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is a solution of our system. Further, we use the fact that the real and imaginary parts of
x;(t) are linearly independent solutions of our system. Now
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Therefore, the general solution is given by

x(t) = cret cos 2t T ooet sin 2t
-t cos 2t + sin 2t 2 sin2t —cos2t |-

LoA=( :i) implies det(A — A1) = A2- 2\, +5.

Therefore,

is an eigenvector for A; and

Re x4(t)

Im x4(2)

The equilibrium is an unstable spiral point.
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det(A— M) = A2 +1.

implies

Therefore, the eigenvalues are given by A = +i. Now, A; = i implies
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is a solution of our system. Further, we use the fact that the real and imaginary parts of
xi(t) are linearly independent solutions of our system. Now
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Therefore, the general solution is given by

x(t}zcl ( 2cost —sint ) Lo ( 2sint + cost )
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Therefore,

is an eigenvector for A; and

Re x4 ()

Im x,(t)
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The equilibrium is a stable center.
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implies

det(A — M) =\ + 20+ 2.
Therefore, the eigenvalues are given by A = —1 4. Now, Ay = —1 — i has corresponding
eigenvector
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xi(t) =e (2+é)

is a solution of our system. Further, we use the fact that the real and imaginary parts of
x1(t) are linearly independent solutions of our system. Now

Re x;(t) = e—:( cost )

2cost + sint
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Therefore, the general solution is given by

x(t) = ere™” cost + " smt .
2cost +sint —cost+ 2sint

is an eigenvector for Ay and
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The equilibrium 1s an asymptotically stable spiral point.
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det(A — M) =A% +1.

Therefore, the eigenvalues are given by A = +i. Now, A; = 7 implies
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Therefore,
( 241 )
Vi = 1
1s an eigenvector for A; and

xa(t) = e ( 2 )

1s a solution of our system. Further, we use the fact that the real and imaginary parts of
x1(t) are linearly independent solutions of our system. Now

2 1y . 2cost —sint
1 Jeos t— p )sm t| = cost
2 . 1 2sint + cost
Im xi(t) = [(l)smt+(0)c05t] —( sint )
Therefore, the general solution is given by
2cost — sint 2sint + cost
S ( cost ) te (

sint ) ’

The initial condition, x(0) = ( 3 2 ) implies

2 + 1Yy _ (3
“Al1)7 2 o)\ 2 )
Therefore, ¢; = 2 and ¢y = —1. Thus, the solution 1s given by
x(t) = 2 2cost —sint _ 2sint +cost \ [ 3cost —4sint
- cost sint - 2cost —sint |} °
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Both components oscillate as t — oo.



13.(a) The characteristic equation is A2 — 2\ + 1 4+ a® = 0. Therefore, the eigenvalues are
A=ati

(b) For a > 0, the equilibrium will be an unstable spiral. For a < 0, the equilibrinm with
be a stable spiral. For o = 0, the equilibrium will be a center.

(c) Below we show phase portraits for « = —1/2 and o = 1/2.

15.(a) The characteristic equation is A> + 5o — 4 = 0. Therefore, the eigenvalues are A =
+v4 —5a.

(b) If 4 — 5a < 0, then the eigenvalues are purely imaginary. In that case, the equilibrium
point is a center. If 4 — 5a > 0, then the eigenvalues are real and distinct. In that case, the
equilibrium point is a center. Therefore, the critical value for o 1s @ = 4/5.

(c) Below we show phase portraits for o = 2/5, and o = 6/5.
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