MATH 226: Differential Equations

September 23, 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Notes on Assignment 3 Assignment 4 **Prof. Kubacki Will Teach** Monday's Class

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Another Test For Stability

Theorem: Let y* be an equilibrium point of y' = f(y) with f having a continuous derivative (as a function of y) in a neighborhood of y*. Then
If f'(y*) < 0, then y* is asymptotically stable
If f'(y*) > 0, then y* is unstable
The test is inconclusive if f'(y*) = 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Today Part I Variables Separable

y'(t) = f(y)g(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Separate Variables

Integrate

Use Initial Value To Find Integration Constant C

Solve for y

Determine Interval of Validity of Solution

Example 1:
$$y'=rac{t^2}{y(1+t^3)}$$

Note:
$$y \neq 0, t \neq -1$$

How To Solve: Separate Variables and Integrate With Respect To Independent Variable

$$y y' = \frac{t^2}{(1+t^3)}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

▲ロト▲圖ト▲画ト▲画ト 画 のへで

In General

y' = f(y)g(t)Is solved as $\int \frac{1}{f(y)} y' = \int g(t)$ $\int \frac{1}{f(y)} dy = \int g(t) dt$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example: An Initial Value Problem

$$y' = \frac{3-2t}{y}, y(1) = -6$$
$$\int yy' = \int 3 - 2t$$
$$\frac{y^2}{2} = 3t - t^2 + C$$
$$y^2 = 6t - 2t^2 + C$$
Set $t = 1, y = -6$:
$$36 = 6 - 2 + C$$
 so $C = 32$

$$y^2 = -2t^2 + 6t + 32$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example (Continued): An Initial Value Problem

$$y' = \frac{3-2t}{y}, y(1) = -6$$

Has Solution

$$y = -\sqrt{-2t^2 + 6t + 32}$$

Need
$$-2t^2 + 6t + 32 = 2(-t^2 + 3t + 16) > 0$$

or $t^2 - 3t - 16 < 0$

Roots are
$$t = \frac{3 \pm \sqrt{9+64}}{2} = \frac{3 \pm \sqrt{73}}{2}$$

Solution is valid on $\frac{3 - \sqrt{73}}{2} < t < \frac{3 + \sqrt{73}}{2}$
Roughly $-2.77 < t < 5.77$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Example (Continued): An Initial Value Problem

$$y' = \frac{3-2t}{y}, y(1) = -6 \text{ Blue}$$

$$y' = \frac{3-2t}{y}, y(1) = 4 \text{ Green}$$

・ロト <
日 > <
三 > <
三 > <
三 > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ

Today Part II

First Order LINEAR Differential Equations

$$rac{dy}{dt} + p(t)y = g(t)$$

Method of Integrating Factors

Today Part II

First Order LINEAR Differential Equations

$$rac{dy}{dt} + p(t)y = g(t)$$

Method of Integrating Factors

First Order LINEAR Differential Equations

$$\frac{dy}{dt} + p(t)y = g(t)$$
$$y' + p(t)y = g(t)$$

- \blacktriangleright y' and y appear all by themselves
- No terms like y^2 or $\cos y$ or y y'
- p(t) and g(t) can be nonlinear, complicated, but continuous.

First Order LINEAR Differential Equations

$$y'+p(t)y=g(t)$$

Solution By Method of Integrating Factors:

Multiply Equation By Factor That Converts Left Hand Side Into a Derivative

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fundamental Theorem of Calculus

If
$$f(t) = \int p(t)dt$$
, then $f'(t) = p(t)$

If
$$f(t) = \int_0^t p(s)ds$$
, then $f'(t) = p(t)$

Application:

Find the derivative of $e^{\int p(t) dt} = exp(\int p(t) dt)$ with respect to t

Solution : Use Product Rule

$$\left(e^{\int p(t) dt}\right)' = e^{\int p(t) dt} p(t) = p(t)e^{\int p(t) dt}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Let's Do a Specific Example (Problem 15 in Text):

Solve
$$ty' + 4y = t^2 - t + 1$$
, with $y(1) = \frac{1}{4}$

Put in Standard Form (*): $y' + \frac{4}{t}y = t - 1 + \frac{1}{t}$ Integrating Factor is $e^{\int \frac{4}{t} dt} = e^{4 \ln t} = e^{\ln t^4} = t^4$ Multiply (*) by t^4 : $t^4v' + 4t^3v = t^5 - t^4 + t^3$ $(t^4v)' = t^5 - t^4 + t^3$ and integrate $t^4y = \frac{t^6}{5} - \frac{t^5}{5} + \frac{t^4}{4} + C$ Solve for $y: y = \frac{t^2}{6} - \frac{t}{5} + \frac{1}{4} + Ct^{-4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Original Initial Value Problem

Solve
$$ty' + 4y = t^2 - t + 1$$
, with $y(1) = \frac{1}{4}$

Solution

$$y = \frac{t^2}{6} - \frac{t}{5} + \frac{1}{4} + \frac{C}{t^4}$$

Use initial condition to find C:

$$\frac{1}{4} = \frac{1}{6} - \frac{1}{5} + \frac{1}{4} + C$$

$$C = \frac{1}{30}$$
so
$$y = \frac{t^2}{6} - \frac{t}{5} + \frac{1}{4} + \frac{1}{30t^4}$$

General Case:

$$y' + p(t)y = g(t)$$

Multiply through by $e^{\int p(t) dt}$:

$$e^{\int p(t) dt}y' + p(t)e^{\int p(t) dt}y = g(t)e^{\int p(t) dt}$$

Rewrite Left Hand Side:
 $\left(e^{\int p(t) dt}y\right)' = g(t)e^{\int p(t) dt}$

Integrate Both Sides:

$$e^{\int p(t) dt} y = \int g(t) e^{\int p(t) dt} + C$$

Divide by Coefficient of y:

$$y = e^{-\int p(t) dt} \int g(t) e^{\int p(t) dt} + C e^{-\int p(t) dt}$$

$$y' + p(t)y = g(t)$$
 has solution $y = e^{-\int p(t) dt} \int g(t)e^{\int p(t) dt} + Ce^{-\int p(t) dt}$

Problem 35: Construct a first order linear differential equation whose solutions are asymptotic to the line y = 4 - t as $t \to \infty$.

Solution: Add a term that goes to 0 as $t \to \infty$.

One choice would be Ce^{-t} for an arbitrary constant *C*.

Then solution has form $y = Ce^{-t} + 4 - t$.

Differentiate with respect to t: $y' = -Ce^{-t} - 1$

But
$$Ce^{-t} = y - 4 + t$$

So y' = -(y - 4 + t) - 1 = -y + 4 - t - 1 = -y + 3 - t

$$y' + y = 3 - t$$

Next Time

Modeling With First Order Differential Equations

