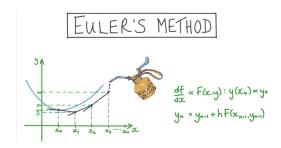
MATH 226 Differential Equations



Class 31: November 30, 2022

Project 3

Due: Friday, December 9

Numerical Methods For Studying Differential Equations

Euler's Method

Numerical Accuracy Improved Euler Runge-Kutta. Method Numerical Methods for First Order Systems

Euler's Method

INSTITUTION VM CALCYLI INTEGRALIS

VOLVMEN PRIMVM

IN QVO METHODVS INTEGRANDI A PRIMIS PRIN-CIPIIS VSQVE AD INTEGRATIONEM AEQVATIONVM DIFFE-RENTIALIVM PRIMI GRADVS PERTRACTATVR.

AFCTORE

LEONHARDO EVLERO

ACAD SCIENT, BORVSSIAE DIRECTORE VICENNALI ET SOCIO

ACAD, PETROP, PARISIN, ET LONDIN.

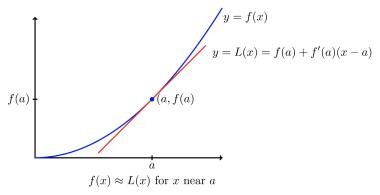
PETROPOLI
Impensis Academiae Imperialis Scientiarum
1768.

Leonhard Euler
April 15, 1707 – September 18, 1783
Swiss mathematician, physicist, astronomer, geographer, logician and engineer

Link To Euler's Biography

The Most Important Diagram in Calculus

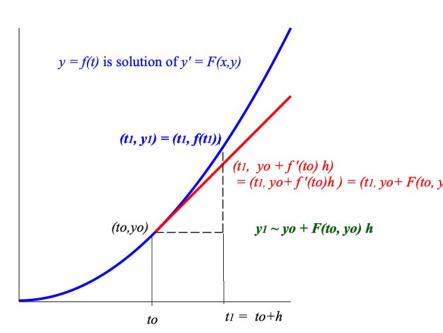
Linear Approximation



$$f(x) \approx f(a) + f'(a)h$$
 where $h = x - a$

Suppose f is the solution of the Differential Equation

$$y'=rac{dy}{dx}=F(x,y)$$
 with initial condition $y_0=f(x_0)$



Given
$$y' = F(t, y)$$
 with $f(t_0) = y_0$

$$y_1 = y_0 + F(t_0, y_0)h$$

 $y_2 = y_1 + F(t_1, y_1)h$ where $t_1 = t_0 + h$
 $y_3 = y_2 + F(t_2, y_2)h$ where $t_2 = t_1 + h$
 $y_4 = y_3 + F(t_3, y_3)h$ where $t_3 = t_2 + h$
...
 $y_{n+1} = y_n + F(t_n, y_n)h$ where $t_n = t_{n-1} + h$

Example: Consider the Differential Equation

$$y' = 3 + t - y$$
 with $y(0) = 1$

This is First Order Linear:

$$y' + y = 3 + t$$

Integrating Factor is
$$e^{\int 1dt} = e^t$$

$$e^t \ y' + e^t \ y = 3e^t + te^t$$

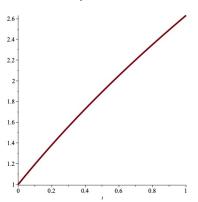
$$(e^t \ y)' = 3e^t + te^t$$

$$e^t \ y = 3e^t + te^t - e^t + C$$

$$y = 3 + t - 1 + Ce^{-t} = t + 2 + Ce^{-t}$$
Apply Initial Condition:
$$1 = 0 + 2 + C \text{ so } C = -1$$
Solution is $y = t + 2 - e^{-t}$

y' = 3 + t - y with y(0) = 1

Solution is $y = t + 2 - e^{-t}$



Euler's Method

$$y' = 3 + t - y$$
 with $y(0) = 1$
Solution is $y = t + 2 - e^{-t}$
Set Step Size $h = 0.1$

$$y_0 = 1$$

 $y_1 = y_0 + y'(0)h = 1 + (3 + 0 - 1)h = 1 + 2h = 1 + 2(.1) = 1.2$
True Value is $.1 + 2 - e^{-.1} = 1.195162582$

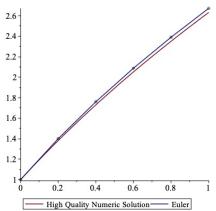
$$y_2 = y_1 + y'(.1)h = 1.2 + (3 + .1 - 1.2)(.1) = 1.2 + .19 = 1.39$$

True Value is $.2 + 2 - e^{-.2} = 1.381269247$

t	Exact	h = 0.1	h = 0.05	h = 0.025
0	1.	1.0	1.0	1.0
0.1	1.195162582	1.2	1.1975	1.196312109
0.2	1.381269247	1.39	1.38549375.	1.383348196
0.3	1.559181779	1.571	1.564908109	1.562001654
0.4	1.729679954	1.7439	1.736579569	1.733079832
0.5	1.893469340	1.9095	1.901263061	1.897312320

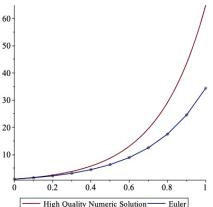
Euler's Method with h = 0.1

$$y' = 3 + t - y$$
 with $y(0) = 1$
Solution is $y = t + 2 - e^{-t}$



What Can Go Wrong? Euler's Method with h = 0.1

$$y' = 1 - t + 4y$$
 with $y(0) = 1$
Solution is $y = \frac{t}{4} - \frac{3}{16} + \frac{19}{16}e^{4t}$



What Can Go Wrong? Cut Step Size in Half Euler's Method with h = 0.05

$$y' = 1 - t + 4y$$
 with $y(0) = 1$
Solution is $y = \frac{t}{4} - \frac{3}{16} + \frac{19}{16}e^{4t}$

0.2

0.4

High Quality Numeric Solution-

0.6

0.8

— Euler

What Can Go Wrong? Euler's Method with h=0.05 but extend the interval to [0,2]

$$y' = 1 - t + 4y$$
 with $y(0) = 1$
Solution is $y = \frac{t}{4} - \frac{3}{16} + \frac{19}{16}e^{4t}$

