MATH 226: Differential Equations

Class 23: November 4, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Notes on Assignment 13 Assignment 15 Sample Exam 2 Notes on Sample Exam 2 Matrix Exponential Power Series Computing Matrix Exponential From a Fundamental Matriix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Announcements

Exam 2 Wednesday, November 16

Special Case: x' = A x

where **A** is a square matrix of constants.

For each eigenvector ${\bf v}$ associated with an eigenvalue λ of the matrix ${\bf A}$:

 $e^{\lambda t} \mathbf{v}$

is a solution.

Matrix Exponential Function Our very first example in the course x' = ax where a is a constant has a solution of the form $x = e^{at}$ By analogy, $\mathbf{X'} = \mathbf{A} \mathbf{X}$ "ought" to have a solution of the form $\mathbf{X} = e^{At}$ But What is the Exponential of a Matrix? Applying Exponential Function to a Matrix Recall that the square of a matrix is not the matrix of squares. So we don't expect to get the matrix of exponentials.

Begin with the expression for e^{at} as a power series:

$$e^{at} = 1 + at + \frac{a^2t^2}{2!} + \frac{a^3t^3}{3!} + \frac{a^4t^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{a^kt^k}{k!}$$

This series converges absolutely for all a and t. Let's define e^{At} as

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \frac{A^4t^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{A^kt^k}{k!}$$

We can compute each term in this series; it will be an $n \times n$ matrix if A is an $n \times n$ matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \frac{A^4t^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{A^kt^k}{k!}$$

Some Properties of e^{At} :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$e^{A0} = e^0 = I$$

2. $(e^{At})' = 0 + A + \frac{A^2}{2!}2t + \frac{A^3}{3!}3t^2 + \frac{A^4}{4!}4t^3... + A^4 + A^2t + \frac{A^3}{2!}t^2 + \frac{A^4}{3!}t^3 + ...$
 $= A(I + At + \frac{A^2}{2!}t^2 + \frac{A^3}{3!}t^3 + ...)$
 $= Ae^{At}$

so e^{At} is a solution of $\mathbf{x}' = A\mathbf{x}$.

- 3. Each column is a solution
- 4. Columns are linearly independent

5.
$$e^{-At} = (e^{At})^{-1}$$
 (Matrix Inverse)

$$6. e^{A(s+t)} = e^{As}e^{At}$$

7.
$$e^{(A+B)t} = e^{At}e^{Bt}$$
 if $AB = BA$

8.
$$Ae^{At} = e^{At}A$$

Computing
$$e^{At}$$
 via Power Series
Need A, A^2, A^3, A^4, \dots
Note: $A^2 = AA, A^3 = AA^2, A^4 = AA^3, etc$
Example $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 $A^2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$
 $A^3 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} = \begin{pmatrix} 37 & 54 \\ 81 & 118 \end{pmatrix}$
 $A^6 = \begin{pmatrix} 5743 & 8370 \\ 12555 & 18298 \end{pmatrix}$

Not so easy to see what e^{At} actually looks like!

Try a different example:
$$A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$$
[See *Maple* "Matrix Exponential Power Series"]
$$\begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ -(a+2c) & -(b+2d) \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} -1 & -2 \\ 2 & 3 \end{pmatrix}, A^{3} = \begin{pmatrix} 2 & 3 \\ -3 & -4 \end{pmatrix}, A^{4} = \begin{pmatrix} -3 & -4 \\ 4 & 5 \end{pmatrix}$$

$$A^{k}$$

$$k \text{ even } k \text{ odd}$$

$$\begin{pmatrix} -(k-1) & -k \\ k & k+1 \end{pmatrix} \begin{pmatrix} k-1 & k \\ -k & -(k+1) \end{pmatrix}$$
General Formula:
$$A^{k} = \begin{pmatrix} (-1)^{k+1}(k-1) & (-1)^{k+1}k \\ (-1)^{k}k & (-1)^{k}(k+1) \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Our Example:
$$A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$$

Found: $A^{k} = \begin{pmatrix} (-1)^{k+1}(k-1) & (-1)^{k+1}k \\ (-1)^{k}k & (-1)^{k}(k+1) \end{pmatrix}$
Upper Left: 0,-1, 2,-3,4,-5, . . .
Upper Right: 1, -2, 3, -4, 5, . . .
Lower Left: -1, 2,-3,4,-5, . . .
Lower Right: -2, 3, -4, 5, . . .
Power Series:
 $e^{At} = I + At + \frac{A^{2}t^{2}}{2!} + \frac{A^{3}t^{3}}{3!} + \frac{A^{4}t^{4}}{4!} + ... = \sum_{k=0}^{\infty} \frac{A^{k}t^{k}}{k!}$
Examine Upper Right Entries:
 $0 + 1t - 2\frac{t^{2}}{2!} + 3\frac{t^{3}}{3!} - 4\frac{t^{4}}{4!} + 5\frac{t^{5}}{5!} - 6\frac{t^{6}}{6!} + ...$
 $= t \left[1 - t + \frac{t^{2}}{2!} - \frac{t^{3}}{3!} + \frac{t^{4}}{4!} - \frac{t^{5}}{5!} + ... \right] = te^{-t}$
Work out other three entries:
 $e^{At} = \begin{pmatrix} e^{-t}(t+1) & te^{-t} \\ -te^{-t} & (1-t)e^{-t} \end{pmatrix}$
THERE'S GOT TO BE A BETTER WAY!

An Alternative Way To Compute e^{at}

- Idea: Let Φ be any fundamental solution matrix for $\mathbf{x}' = A\mathbf{x}$ with $\Phi(0) = I$.
- Then $\Phi(t)$ and e^{At} are both solutions of $\mathbf{x}' = A\mathbf{x}$ which satisfy the same initial condition.

The Uniqueness of Solutions Theorem implies $\Phi(t) \equiv e^{At}$ How to find Φ .

- 1. Use Eigenvalue/ Eigenvector approach to find a full linearly independent set of solutions to X' = Ax.
- 2. Enter them as columns in a matrix in a matrix X(t) (This is a fundamental matrix)
- 3. X(t) is invertible for all t. Thus X(0) is an invertible matrix of constants
- 4. Define $\Phi(t) = X(t) [X(0)]^{-1}$

Then $\Phi(0) = X(0) [X(0)]^{-1} = I$ and $\Phi'(t) = X'(t) [X(0)]^{-1} = AX(t) [X(0)]^{-1} = A\Phi(t)$ so Φ is also a solution.

(ロ)、

Using this approach for
$$\mathbf{x}' = A\mathbf{x}$$
 where $A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$
 $det(A - \lambda I) = det \begin{pmatrix} -\lambda & 1 \\ -1 & -2 - \lambda \end{pmatrix} = 2\lambda + \lambda^2 + 1 = (\lambda + 1)^2$
 $\lambda = -1$ is double root; algebraic multiplicity = 2
To find eigenvectors: $(A - \lambda I) \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ which reduces to
 $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ so $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
Geometric Multiplicity = 1.
One solution is $e^{-1t}\mathbf{v} = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
To find another, solve $(A - \lambda I)\mathbf{w} = \mathbf{v}$ for \mathbf{w}
 $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ implies $\begin{array}{c} w_1 + w_2 = 1 \\ -w_1 - w_2 = -1 \end{array}$
Choose $\mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } \mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Solutions are $e^{-t}\mathbf{v}$, $te^{-t}\mathbf{v} + e^{-t}\mathbf{w}$
$$\mathbf{x}_1 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} e^{-t} \\ -e^{-t} \end{pmatrix}$$
$$\mathbf{x}_2 = te^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + e^{-t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} te^{-t} + e^{-t} \\ -te^{-t} \end{pmatrix} = \begin{pmatrix} e^{-t}(t+1) \\ e^{-t}(-t) \end{pmatrix}$$
$$\mathbf{X}(t) = \begin{pmatrix} e^{-t} & e^{-t}(t+1) \\ -e^{-t} & e^{-t}(-t) \end{pmatrix} \text{ so } \mathbf{X}(\mathbf{0}) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$$

Then $[\mathbf{X}(\mathbf{0})]^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$
$$\text{Thus}$$
$$e^{At} = \Phi(t) = \mathbf{X}(t)[\mathbf{X}(\mathbf{0})]^{-1} = \begin{pmatrix} e^{-t} & e^{-t}(t+1) \\ -e^{-t} & e^{-t}(-t) \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} e^{-t}(t+1) & te^{-t} \\ -e^{-t}t & e^{-t}(1-t) \end{pmatrix}$$

・ロト ・四ト ・ヨト ・ヨト ・日・

Review The Matrix Exponential

$$e^{At} = I + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} + \dots + A^k \frac{t^k}{k!} + \dots$$

 e^{At} is an $n \times n$ matrix Each column of e^{At} is a solution of $\mathbf{x'} = A\mathbf{x}$ The columns form a linearly independent set

Some Other Nice Properties:

$$e^{A imes 0} = I$$

 $(e^{At})' = Ae^{At}$
 $e^{-At} = (e^{At})^{-1}$
 $e^{A(r+s)} = e^{Ar}e^{As}$

Review

 e^{At} has wonderful properties but it is hard to compute via the power series definition.

Alternate Way To Compute Matrix Exponential e^{At}

 $e^{At} = X(t)(X(0))^{-1}$

where X(t) is any Fundamental Matrix for x' = Ax.

How To Find X? Use eigenvalue/eigenvector approach.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nonhomogeneous Systems

Recall Solution of
$$x' = ax + g(t)$$

 $x' - ax = g(t)$
Multiply by integrating factor e^{-at}
 $(xe^{-at})' = e^{-at}g(t)$
 $xe^{-at} = \int e^{-at}g(t) dt + C$
 $x = e^{at} \int e^{-at}g(t) dt + Ce^{at}$
 $x = e^{at} \int_0^t e^{-as}g(s) ds + Ce^{at}$
Evaluate at $t = 0$:
 $x = e^{at} \int_0^t e^{-as}g(s) ds + x(0)e^{at}$

Nonhomogeneous Systems

x' = ax + g(t) has solution $x = e^{at} \int_0^t e^{-as}g(s) ds + e^{at}x(0)$ $\mathbf{X'} = A\mathbf{X} + \mathbf{g}(t)$ has solution

$$\mathbf{X}=e^{At}\int_{0}^{t}e^{-As}\mathbf{g}(s)+e^{At}\mathbf{X}(0)$$

$$\mathbf{X}=\Phi(t)\int_{0}^{t}\Phi^{-1}(s)\mathbf{g}(s)+\Phi(t)\mathbf{X}(0)$$

We can also write the solution as

$$\mathbf{X}(t)\int_{t_0}^t \mathbf{X}^{-1}(s)\mathbf{g}(s)\,ds + \mathbf{X}(t)\mathbf{X}^{-1}(t_0)$$

where **X** is any fundamental solution of $\mathbf{X'} = A\mathbf{X}$