MATH 226: Differential Equations

Class 15: October 17, 2022

э

Notes on Exam 1 Notes on Assignment 8 Assignment 9

In Handouts Folder:

Unequal Roots.mw Problem 30 on Page 144.maple PhasePlane Tutorial (also need PlotPhasePlane.m) Solving Linear System in MATLAB

Announcements

For Next Time, Work Through

Complex Numbers

Use the imaginary unit i to write complex numbers, and add, subtract, and multiply complex numbers.

- Find complex solutions of quadratic equations.
- Write the trigonometric forms of complex numbers.
- Find powers and nth roots of complex numbers.

Comments/Questions on Exam 1

Problem 1: Q' = r(Q - R) Q = T is Equilibrium Solution Can Q reach this value?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Comments on Some Homework Problems

Section 3.1 : Exercise 38 Show that $\lambda = 0$ is an eigenvalue for a matrix **A** if and only if $det(\mathbf{A}) = 0.$

Must Prove Both:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If λ = 0 is an eigenvalue, then det(A) =0, AND
If det(A) =0, then λ = 0 is an eigenvalue of A.

If $\lambda = 0$ is an eigenvalue, then det(**A**) =0

Proof:

If $\lambda = 0$ is an eigenvalue, then there is a nonzero vector \vec{v} such that $\mathbf{A} \ \vec{v} = \vec{0}$. Hence \mathbf{A} is not invertible so det $(\mathbf{A}) = 0$.

If det(**A**) =0, then $\lambda = 0$ is an eigenvalue of **A**.

Proof: Note that $\mathbf{A} = \mathbf{A} - \mathbf{0} = \mathbf{A} - \mathbf{0} \mathbf{I}$. If det(\mathbf{A}) = 0, then det($\mathbf{A} - \mathbf{0} \mathbf{I}$) = 0 so 0 satisfies the characteristic equation for \mathbf{A} and hence is an eigenvalue.

Comments on Some Homework Problems

Section 3.2 Exercise 30c

Use a computer to draw component plots of the initial value problem and the equilibrium solutions.

See Problem 30 on Page 144.maple

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Major Goal: **Understand Systems of Differential Equations** X' = P(t) X + g(t)where P(t) is $n \times n$ Matrix of **Functions**

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence and Uniqueness Theorems for Linear Systems

Theorem 2.4.1: If p(t) and g(t) are continuous functions on an open interval I containing the point $t = t_o$ and y_o is any prescribed initial value, then there exists a unique solution $y = \phi(t)$ of the differential equation that satisfies the differential equation

y' + p(t)y = g(t)for all *t* in *I* with $\phi(t_o) = \underline{y_o}$.

Theorem 3.2.1: If P(t) is an $n \times n$ matrix and $\mathbf{g}(t)$ is an $n \times 1$ vector whose entries are continuous on an open interval I containing the point t_o and $\underline{\mathbf{y}}_{\underline{o}}$ is any prescribed initial value, then there is a unique solution $\mathbf{y} = \mathbf{\Phi}(t)$ of the system of differential equations

$$\mathbf{X}' = P(t)\mathbf{X} + \mathbf{g}(t)$$

for all t in I with $\Phi(t_o) = \mathbf{y}_0$.

Theorem 3.2.1: If P(t) is an $n \times n$ matrix and $\mathbf{g}(t)$ is an $n \times 1$ vector whose entries are continuous on an open interval I containing the point t_o and $\underline{\mathbf{y}}_{\underline{\mathbf{0}}}$ is any prescribed initial value, then there is a unique solution $\mathbf{y} = \mathbf{\Phi}(t)$ of the system of differential equations

$$\mathbf{X}' = P(t)\mathbf{X} + \mathbf{g}(t)$$

for all t in I with $\Phi(t_o) = \mathbf{y}_0$.

What Does This Theorem Say in the case P(t) is an $n \times n$ matrix of constants and g(t) is identically 0? There is a unique solution valid for all real numbers!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Focus on Linear Homogeneous System with Constant Coefficients X' = A X

where A is a 2 \times 2 matrix.

Begin with Earlier Example x' = -9x + 11y y' = 12x - 8y $A = \begin{bmatrix} -9 & 11\\ 12 & -8 \end{bmatrix}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w}$

where α and β are arbitrary constants λ is an eigenvalue of A with associated eigenvector \vec{v} and $\mu \neq \lambda$ is an eigenvalue of A with associated eigenvector \vec{w} .

The solution of the original system is then

$$\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w} + \begin{bmatrix} x^* \\ y^* \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two Particular Examples: of Richardson Arms Race Model

$$\begin{array}{c|c} x' = -5x + 4y + 1 & x' = 11y - 9x - 15 \\ y' = 3x - 4y + 2 & y' = 12x - 8y - 60 \end{array}$$

$$(x^*, y^*) = \left(\frac{3}{2}, \frac{13}{8}\right) & (x^*, y^*) = (13, 12) \\ A = \begin{bmatrix} -5 & 4 \\ 3 & -4 \end{bmatrix} & A = \begin{bmatrix} -9 & 11 \\ 12 & -8 \end{bmatrix} \\ \lambda = -1, \vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \lambda = 3, \vec{v} = \begin{bmatrix} 11 \\ 12 \end{bmatrix} \\ \mu = -8, \vec{w} = \begin{bmatrix} -4 \\ 3 \end{bmatrix} & \mu = -20, \vec{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ \mu = -20, \vec{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \beta e^{-8t} \begin{bmatrix} -4 \\ 3 \end{bmatrix} + \begin{bmatrix} \frac{3}{2} \\ \frac{13}{8} \end{bmatrix} & \alpha e^{3t} \begin{bmatrix} 11 \\ 12 \end{bmatrix} + \beta e^{-20t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 13 \\ 12 \end{bmatrix}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Two solutions to the homogeneous system are

$$e^{3t}\vec{v}$$
 and $e^{-20t}\vec{w}$
 $e^{3t}\begin{bmatrix}11\\12\end{bmatrix}$ and $e^{-20t}\begin{bmatrix}1\\-1\end{bmatrix}$
Then $C_1e^{3t}\begin{bmatrix}11\\12\end{bmatrix} + C_2e^{-20t}\begin{bmatrix}1\\-1\end{bmatrix}$ is a solution for any constants
 C_1 and C_2 .

Now suppose $\Phi(t)$ is any solution to the system with $\Phi(0) = \begin{vmatrix} x_0 \\ y_0 \end{vmatrix}$

CLAIM: We can find C1 and C2 so that

$$\Phi(t) = C_1 e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

CLAIM: We can find C1 and C2 so that

$$\Phi(t) = C_1 e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

NEED: Agreement at
$$t = 0$$
:
 $C_1 e^{3 \times 0} \begin{bmatrix} 11 \\ 12 \end{bmatrix} + C_2 e^{-20 \times 0} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

$$C_1 \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} x_0\\y_0 \end{bmatrix}$$

$$11C_1 + 12C2 = x_0 12C_1 - 1C_2 = y_0$$

$$\begin{bmatrix} 11 & 1 \\ 12 & -1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$\begin{bmatrix} 11 & 1 \\ 12 & -1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

has a solution for all x_0, y_0 exactly when the coefficient matrix $M = \begin{bmatrix} 11 & 1\\ 12 & -1 \end{bmatrix}$ is invertible

and this happens if and only the columns of the coefficient matrix are a linearly independent set of vectors.

But the columns are \vec{v} and \vec{w} which are eigenvectors belonging to distinct eigenvalues

so they do form a linearly independent set.

The solution will be
$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = M^{-1} \begin{bmatrix} x_0\\ y_o \end{bmatrix} = \frac{-1}{23} \begin{bmatrix} -1 & -1\\ -12 & 11 \end{bmatrix} \begin{bmatrix} x_0\\ y_o \end{bmatrix}$$

The solution will be

$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = M^{-1} \begin{bmatrix} x_0\\ y_o \end{bmatrix} = \frac{-1}{23} \begin{bmatrix} -1 & -1\\ -12 & 11 \end{bmatrix} \begin{bmatrix} x_0\\ y_o \end{bmatrix}$$

Thus
$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = \begin{bmatrix} \frac{x_0 + y_0}{23}\\ \frac{12x_0 - 11y_0}{23} \end{bmatrix}.$$

We have found one solution of the homogeneous system that

- Agrees with Φ and t = 0 and
- ls a linear combination of $e^{3t}\vec{v}$ and $e^{-20t}\vec{w}$.

By The Uniqueness Theorem, Φ **must** be a linear combination of these two solutions.

Thus these two particular solutions are a **Spanning Set** for the collection of all solutions to the homogeneous system.

The two particular solutions $e^{3t}\vec{v}$ and $e^{-20t}\vec{w}$ form a **Spanning Set** for the collection of all solutions to the homogeneous system.

What Made This Work? \vec{v}, \vec{w} is a linearly independent set of vectorswhich we know is true since they are associated with two distincteigenvalues.

Moreover, the two solutions themselves are Linearly Independent Solutions. They form a **BASIS** for the set of all solutions to the homogeneous system of differential equations X' = A X.

Theorem: Let λ and μ be distinct eigenvalues for a square matrix A with corresponding eigenvectors \vec{v} and \vec{w} . Then $e^{\lambda t} \vec{v}, e^{\mu t} \vec{w}$ is a linearly independent set of solutions for $\mathbf{X'} = A \mathbf{X}$.

Our Main Agenda

Solve X' = A X where A is an $n \times n$ matrix of constants and X is an *n*-dimensional vector of functions. Results So Far

Theorem: The set of solutions is an *n*-dimensional vector space. We can find some solutions of the form $e^{\lambda t} \vec{v}$ where λ is an eigenvalue of A and \vec{v} is an associated eigenvector. Distinct eigenvalues give rise to linearly independent solutions. **Outstanding Questions** How to handle complex eigenvalues. How to find *n* linearly independent solutions to $\mathbf{X'} = \mathbf{A} \mathbf{X}$ when there are not enough of the form $e^{\lambda t} \vec{v}$.

Current Goal: Continue Study of Linear Homogeneous Systems With Constant Coefficients X' = A X 2×2 Case

Theorem: If λ and μ are distinct eigenvalues (real or complex) of a 2 \times 2 matrix A having corresponding eigenvectors \vec{v} and \vec{w} , then every solution of $\mathbf{x'} = A \mathbf{x}$ is a linear combination of $e^{\lambda t} \vec{v}$ and $e^{\mu t} \vec{w}$.

(日) (日) (日) (日) (日) (日) (日) (日)

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Characteristic Polynomial of A is det $(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc$
 $\lambda^2 - \text{Trace}(A) \lambda + \text{Det } A$
Characteristic Equation: det $(A - \lambda I) = 0$
Eigenvalues Are Roots of Characteristic Polynomial

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2}$$
$$\lambda = \frac{(a+d) \pm \sqrt{(a-d)^2 + 4bc}}{2}$$

シック 単 (中本)(中本)(日)(日)

$$\lambda = \frac{(a+d) \pm \sqrt{(a-d)^2 + 4bc}}{2}$$

Possibilities

2 Real Unequal Roots 2 Complex Roots 1 Real Double Root

More About 2 Real Unequal Roots Case $\mathbf{x'} = A \mathbf{x}$

The Origin (0,0) is an equilibrium and is called a **NODE**

More About 2 Real Unequal Roots Case $\mathbf{x}' = A \mathbf{x}$ The Origin (0,0) is an equilibrium and is called a **NODE**

- $$\label{eq:lambda} \begin{split} \lambda_1,\lambda_2 < 0 & \mbox{Node is Asymptotically Stable} \\ & \mbox{NODAL SINK} \end{split}$$
- $$\label{eq:lambda} \begin{split} \lambda_1,\lambda_2 > 0 & \mbox{Node is Unstable} \\ \mbox{NODAL SOURCE} \end{split}$$
- Opposite Sign Node is Unstable SADDLE POINT Nodal Sink $\begin{bmatrix} -7 & 3 \\ 2 & -2 \end{bmatrix}$ $\lambda = -1, -8$ Nodal Source $\begin{vmatrix} 2 & 0 \\ -1 & 3 \end{vmatrix}$ $\lambda = 3, 2$ Saddle Point $\begin{vmatrix} 1 & 1 \\ 4 & 1 \end{vmatrix}$ $\lambda = 3, -1$ ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ZERO AS AN EIGENVALUE

Example: Richardson Arms Race Model With Parallel Stable Lines x' = -mx + ay + r

$$y' = bx - ny + s$$

Slope of
$$\mathbf{L} = \frac{m}{a}$$

Slope of $\mathbf{L'} = \frac{b}{n}$

Parallel if
$$\frac{m}{a} = \frac{b}{n}$$

$$A = \begin{bmatrix} -m & a \\ b & -n \end{bmatrix}$$

$$mn = ab \Leftrightarrow mn - ab = 0 \Leftrightarrow det(A) = 0$$

Characteristic Equation: $\lambda^2 + (m+n)\lambda + (mn - ab) = 0$
 $\lambda^2 + (m+n)\lambda = 0$
 $\lambda(\lambda + (m+n)) = 0 \Rightarrow \lambda = 0, \lambda = -(m+n)$

ZERO AS AN EIGENVALUE EXAMPLE

$$m = 3, a = 6, n = 8, b = 4$$

$$A = \begin{bmatrix} -3 & 6\\ 4 & -8 \end{bmatrix}$$

$$\det \begin{bmatrix} -3 - \lambda & 6\\ 4 & -8 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda)(-8 - \lambda) - 24 = \lambda^{2} + 11\lambda + 24 - 24$$

$$= \lambda^{2} + 11\lambda = \lambda(\lambda + 11)$$

$$\lambda = 0, \lambda = -11$$
For $\lambda = -11$:
$$\begin{bmatrix} 8 & 6\\ 4 & 3 \end{bmatrix} \begin{bmatrix} v_{1}\\ v_{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 6\\ 4 & -8 \end{bmatrix} \begin{bmatrix} w_{1}\\ w_{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$4v_{1} + 3v_{2} = 0$$

$$\vec{v} = \begin{bmatrix} -3\\ 4 \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$

$$\lambda = -11, \vec{v} = \begin{bmatrix} -3\\4 \end{bmatrix}$$
$$\lambda = 0, \vec{v} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

General Solution To x' = -3x + 6y y' = 4x = 8yis $\mathbf{x} = C_1 e^{0t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-11t} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ $x = 2C_1 - 3C_2 e^{-11t}$ $y = C_1 + 4C_2 e^{-11t}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Particular Solution:
$$(x_0, y_0)$$
 at $t = 0$
 $x_0 = 2C_1 - 3C_2$
 $y_0 = C_1 + 4C_2$

$$\begin{array}{c|c} 2C_1 - 3C_2 = x_0 \\ -2C_1 - 8C_2 = -2y_0 \\ \text{Add Equations} \\ -11C_2 = x_0 - 2y_0 \end{array} \begin{array}{c|c} 8C_1 - 12C_2 = 4x_0 \\ 3C_1 + 12C_2 = 3y_0 \\ \text{Add Equations} \\ 11C_1 = 4x_0 + 3y_0 \end{array}$$

$$C_1 = rac{4x_0 + 3y_0}{11}, C_2 = rac{-x_0 + 2y_0}{11}$$

$$x = 2\left(\frac{4x_0 + 3y_0}{11}\right) - 3\left(\frac{-x_0 + 2y_0}{11}\right)e^{-11t}$$
$$y = \frac{4x_0 + 3y_0}{11} + 4\left(\frac{-x_0 + 2y_0}{11}\right)e^{-11t}$$

Next Time

Complex Eigenvalues

