MATH 223

Some Notes on Assignment 3 Chapter 2: Exercises 21, 23, 26, 30, 31

21: For each of the following functions from \mathbb{R}^1 into \mathbb{R}^m , describe the set of points where the functions are defined and continuous:

- 1. **f**(*t*) = $(t, \frac{1}{t})$ \setminus *Solution:* $f(t)$ is defined and continuous wherever t does not equal 0.
- 2. $f(t) = (t^2,$ √ \overline{t} , cos *t*, tan *t*) *Solution:* $f(t)$ is defined and continuous where $t \geq 0$ and $t \neq \frac{\pi}{2} + \pi n$ where *n* is a positive integer.
- 3. **f**(*t*) = $\left(\ln t, \arctan t, \frac{t^2-1}{t-1}\right)$ *t*−1 \setminus *Solution:* $f(t)$ is defined and continuous on the set $t > 0$ and $t \neq 1$.
- 4. **f**(*t*) = $(t, t^2, t^3, \sin t, e^t)$ *Solution:* $f(t)$ is defined and continuous on all real numbers.

23: Let V be the set of all functions from \mathbb{R}^1 into \mathbb{R}^m which are continuous at the point *a*. Show that V is a vector space. Does V have finite dimension? *Solution:* i) We already know that vector addition is commutative, associative and preserves continuity. Then, for all **f**, **g**, and **h** included in V

$$
\mathbf{f} + \mathbf{g} = \mathbf{g} + \mathbf{f} \text{ and } (\mathbf{f} + \mathbf{g}) + \mathbf{h} = \mathbf{f} + (\mathbf{g} + \mathbf{h})
$$

ii) The vector space V contains the zero vector $z(t) = 0$.

iii) Every continuous function **f** has an additive inverse **-f** which is also continuous.

iv) The scalar 1 is the multiplicative identity for all continuous functions v) The vector space V is infinitely dimensional. For each *n*, the set of vectors $\{x, x^2, ..., x^n\}$. is a linearly independent set of continuous functions from \mathbb{R} to \mathbb{R}^n , because no polynomial can be written as a linear combination of the others. Since we have a vector of the form x^n for every positive integer *n*, our vector space contains an infinitely large linearly independent set and thus has infinite dimension. [We are writing *x ⁿ* as shorthand for the function $f(x) = x^n$.

26:. For each of the following vector-valued functions **f**, find **f** 0

- 1. **f**(*t*) = (cos 2*t*, sin 2*t*) *Solution*: $f'(t) = (-2 \sin 2t, 2 \cos 2t)$
- 2. **f**(*t*) = $(t^{3/2}, t^{5/2})$ *Solution:* $f'(t) = (\frac{3}{2}t^{1/2}, \frac{5}{2})$ $\frac{5}{2}t^{3/2}$
- 3. **f**(*t*) = (sin 3*t*, e^{-4t} , √ $(t + 1)$ *Solution:* $f'(t) = (3cos(3t), -4e^{-4t}, \frac{1}{2})$ $\frac{1}{2}(t+1)^{-1/2}$
- 4. **f**(*t*) = (t^2, t^3, t^4) *Solution:* $f'(t) = (2t, 3t^2, 4t^3)$

30: Prove Theorem 2.3.2 (c) *Solution:*

 $(\mathbf{p} \cdot \mathbf{q})' =$ (by definition of dot product)

 $(p_1q_1 + p_2q_2 + p_3q_3)'$ = (Derivative of sum is sum of derivatives) $((p_1q_1)' + (p_2q_2)' + (p_3q_3)') =$ (by Product Rule) (p_1) $q'_1q_1 + p'_1q'_1 + p'_2$ $q'_2q_2 + p_2q'_2 + p'_3$ $q'_3q_3+p_3q'_3$ s'_3) = (rearrange terms (p_1) $q'_1q_1 + p'_2$ $q_2^{\prime}q_2+p_3^{\prime}$ g'_3q_3 + $(p_1q'_1 + p_2q'_2 + p_3q'_3)$ \mathbf{q}'_3) = $(\mathbf{p}' \cdot \mathbf{q}) + (\mathbf{p} \cdot \mathbf{q}')$

31: Show that Theorem 2.3.2 implies $(\mathbf{p} - \mathbf{q})' = \mathbf{p}' - \mathbf{q}'$ *Solution:* By Theorem 2.3.2 we know that $(\mathbf{p} + \mathbf{g}) = \mathbf{p}' + \mathbf{g}'$ and $(\alpha \mathbf{q})' = \alpha \mathbf{q}'$ If we let $\alpha = -1$ and substitute $-\mathbf{q}$ for **g** we have

$$
(\mathbf{p} + (-\mathbf{q}))' = \mathbf{p}' + (-\mathbf{q}')
$$

$$
(\mathbf{p} - \mathbf{q})' = \mathbf{p}' - \mathbf{q}'
$$

2