MATH 223 *Some Notes on Assignment 33* Exercises 36ac, 38, and 39 of Chapter 8.

36: Sketch a picture of each of the regions \mathcal{R} in \mathbb{R}^3 described below along with a representative number of outward-pointing normals.Then verify the correctness of Gauss's Theorem for the given vector fields.

- (a): $\mathcal{R}: x^2 + y^2 + z^2 \leq 9; \mathbf{F}(x, y, z) = (y, -x, 0)$
- (c): $\mathcal{R}: x^2 + y^2 \le 4, 1 \le z \le 2; \mathbf{F}(x, y, z) = (0, y, 0)$

Solution: We need to evaluate $\int_{\mathcal{R}}$ div **F** and $\int_{\partial \mathcal{R}}$ **F** independently of each other and show they are equal.

(a) See Solution to Exercise 27 of Assignment 33. The divergence of **F** is $y_x + (-x)y + 0z = 0$ so $\int_{\mathcal{R}}$ div **F** = 0. Using the parametrization from Exercise 27, $\sigma(s,t) = (3\cos s \sin t, 3\sin s \sin t, 3\cos t)$, we have $\sigma_s(s,t) \times \sigma_t(s,t) = (-9\cos s \sin^2 t, -9\sin s \sin^2 t, -9\sin t \cos t)$. We also have $F(\sigma(s,t))$ $(3\sin s \sin t, -3\cos s \sin t, 0)$. Then $F(\sigma(s,t)) \cdot (\sigma_s(s,t) \times \sigma_t(s,t)) = -27 \sin s \cos s \sin^3 t + 27 \sin s \cos s \sin^3 t =$ 0. Thus $\int_{\partial \mathcal{R}} \mathbf{F} = \int_{\partial \mathcal{R}} 0 = 0.$

(c) div $\mathbf{F} = 0_x + y_y + 0_z = 1$ so $\int_{\mathcal{R}}$ div $\mathbf{F} = \int_{\mathcal{R}} 1 =$ Volume enclosed by \mathcal{R} but this is the volume of a circular cylinder of radius 2 and height 1 which has volume 4*π*.

The base of the cylinder lies in the *xy*-plane. The surface has three components:

The Top T: The Bottom B:
$$
(x^2 + y^2 \le 4z = 2)
$$
 $(x^2 + y^2 \le 4z = 2)$ $(x^2 + y^2 \le 4, z = 1)$ $(x^2 + y^2 = 4, 1 \le z \le 2)$

We can parametrize them as follows: Top T: $f(s,t) = (2s \cos t, 2s \sin t, 2), 0 \le s \le 1, 0 \le t \le 2\pi$ Side C : $g(s,t) = (2 \cos s, 2 \sin s, t), 0 \le s \le 2\pi, 0 \le t \le 1)$ Bottom B: $h(s, t) = (2t \cos s, 2t \sin s, 1), 0 \le s \le 2\pi, 0 \le t \le 2\pi$

Then
 $f_s(s,t) = (2 \cos t, 2 \sin t, 0)$ $f_t(s,t) = (-2s\sin t, 2s\cos t, 0)$ $f_s \times f_t = (0, 0, 4s)$ points straight up
 $g_t(s,t) = (0, 0, 1)$ $g_s \times g_t = (2\cos s, 2\sin s, 0)$ points our $g_s(s,t) = (-2\sin s, 2\cos s, 0)$ $g_t(s,t) = (0,0,1)$ $g_s \times g_t = (2\cos s, 2\sin s, 0)$ points outward $h_s(s,t) = (-2t\sin s, 2t\cos s, 0)$ $h_t(s,t) = (2\cos s, 2\sin s, 0)$ $h_s \times h_t = (0,0, -4t)$ points straight down $h_s(s,t) = (-2t\sin s, 2t\cos s, 0)$ $h_t(s,t) = (2\cos s, 2\sin s, 0)$

We also have $\mathbf{F}(f(s,t)) = (0, 2s \sin t, 0)$ for the top *T*, $\mathbf{F}(g(s,t)) = (0, 2 \sin s, 0)$ for the side *C* and $\mathbf{F}(h(s,t)) = (0, 2t\cos s, 0)$ for the bottom B. This yields $\mathbf{F}(\mathbf{f}) \cdot (f_s \times f_t) = 0, \mathbf{F}(g) \cdot (g_s \times g_t) = 4\sin^2 s$, and $\mathbf{F}(h) \cdot (h_s \times h_t) = 0.$

Thus
$$
\int_{\partial \mathcal{R}} \mathbf{F} = \int_B \mathbf{F} + \int_T \mathbf{F} + \int_C \mathbf{F} = 0 + 0 + \int_C \mathbf{F} = \int_C \mathbf{F} = \int_{t=0}^{t=1} \int_{s=0}^{s=2\pi} 4 \sin^2 s \, ds \, dt.
$$

Finally,

$$
\int_{t=0}^{t=1} \int_{s=0}^{s=2\pi} 4\sin^2 s ds dt = \int_{t=0}^{t=1} \int_{s=0}^{s=2\pi} 2(1-\cos 2s) ds dt = \int_{t=0}^{t=1} \left[2s - \sin 2S\right]_{s=0}^{s=2\pi} dt = \int_{t=0}^{t=1} 4\pi dt = 4\pi.
$$

38: Find the flux out of the upper hemisphere H of the unit sphere in \mathbb{R}^3 of the vector field $$

Solution: div $\mathbf{F} = (x+y)_x + (y+z)_y + (x+z)_z = 1+1+1=3$ so the flux is 3 times the volume enclosed by the upper hemisphere (see Exercise 39); that is, $3\left(\frac{4}{3}\right)\pi 1^3 = 4\pi$.

39: Show that the volume of a region \mathcal{R} in \mathbb{R}^3 is equal to

$$
\frac{1}{3} \int_{\partial R} \mathbf{F} \text{ if } \mathbf{F}(x, y, z) = (x, y, z).
$$

Solution: div $\mathbf{F} = x_x + y_y + z_z = 1 + 1 + 1 = 3$. By Gauss,

$$
\frac{1}{3} \int_{\partial \mathcal{R}} \mathbf{F} = \frac{1}{3} \int_{\mathcal{R}} \text{ div } \mathbf{F} = \frac{1}{3} \int_{\mathcal{R}} 3 = \int_{\mathcal{R}} 1 = \text{Volume of } \mathcal{R}
$$