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MATH 223
Some Notes on Assignment 29

Exercises 23 and 30 of Chapter 7.

23 Find the surface area of a circular cylinder of radius r and height h by rotating the graph of f(x) =
r, 0 ≤ x ≤ h about the x-axis.

Solution: Using the parametrization g(t) = (t, r), 0 ≤ t ≤ h, we have g′(t) = (1, 0) so g′(t)| = 1 and
surface area is

´ h

0 2π1 dt = 2πh.

30: Sketch the solid obtained by revolving the graph of y = 4 3
√
x from (8,8) to (27, 12) around the

y−axis and determine its surface area.
Solution: Let g(t) = (t, 4 3

√
t), 8 ≤ t ≤ 27 be the parametrization. Then g′(t) =

(
1, 4

3 t
−2/3) = (1, 4

3t2/3 )
so

|g′(t)| =
√

1 + 16
9t4/3 =

√
9t4/3 + 16

3t2/3

Then the surface area obtained by revolving about the y axis is
ˆ 27

8
2πt
√

9t4/3 + 16
3t2/3 dt = 2π

ˆ 27

8
t1/3

√
9t4/3 + 16 dt

= 2π 1
54

[
(9t4/3 + 16)3/2

]27

8

= π

27

(
7453/2 − 1603/2

)
Exercise A: A curve γ has the parametrization g(t) = (t, 4 cos t, 4 sin t) Sketch the curve, find its
curvature and show it is constant.

Solution: We have g′(t) = (1,−4 sin t, 4 cos t) so |g′(t)| =
√

1 + 16 sin2 t+ 16 cost =
√

1 + 16 =
√

17.
Thus the unit tangent vector is T = 1√

17 (1,−4 sin t, 4 cos t) and T ′ = 1√
17 (0,−4 cos t,−4 sin t so |T ′| =

1√
17

√
0 + 16 cos2 +16 sin2 t = 4√

17 . This curvature is κ = |T ′|
|g′| = 4√

17
1√
17 = 4

17 .

Graph of g(t) = (t, 4 cos t, 4 sin t),−2π ≤ t ≤ 2π Graph of g(t) = (t2, t),−2 ≤ t ≤ 2

Exercise B: Sketch the curve with parametrization g(t) = (t2, t),−2 ≤ t ≤ 2 and find its curvature at
t = 0 and at t =

√
6.

Solution: . We have g′(t) = 2t, 1), |g′(t)| =
√

1 + 4t2 so

T (t) =
(

2t√
1 + 4t2

,
1√

1 + 4t2

)
with T ′(t) =

(
2

√
1 + 4t23/2 ,

−4t
√

1 + 4t23/2

)
and |T ′(t) = 2

1 + 4t2

Thus κ(t) = 2
1 + 4t2

1√
1 + 4t2

= 2
(1 + 4t2)3/2

which makes κ(0) = 2 and κ(
√

6) = 2
(1+24)3/2 = 2

53 .
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Exercise C: Suppose the curve C in the plane is the graph of the real-valued function y = f(x) of one
variable. Show that its curvature is

|f ′′(x)|
(1 + |f ′(x)|2)3/2

Solution: To simplify the notation, we’ll use F for the first derivative f ′ and S for the second derivative
f ′′, simply writing f for f(x), F for f ′(x), and S for f ′′(x).

Then the parametrization g(x) = (x, f(x)) has g′ = (1, F ) so |g′| =
√

1 + F 2. Then

T =
(

1√
1 + F 2

,
F√

1 + F 2

)
and T ′ =

(
−FS

(1 + F 2)3/2 ,
S

(1 + F 2)3/2

)
(leaving out some intermediate steps in calculating T ′) which makes

|T ′| =

√
F 2S2 + S2

(1 + F 2)3 =

√
S2(1 + F 2)
(1 + F 2)3 =

√
S2

(1 + F 2)2 = |S|
1 + F 2

Thus κ = |T
′|
|g′|

= |S|
1 + F 2

1√
1 + F 2

= |S|
(1 + F 2)3/2 = |f ′′(x)|

(1 + [f ′(x)]2)3/2

Exercise D: If C is a curve in 3-dimensional space with parametrization g(t), show that its curvature
is given by

|g′(t)× g′′(t)|
|g′(t)|3

.

Solution: Note first that |T | = 1 so T · T = |T |2 = 1. Taking the derivative of both sides with respect
to t, we have T · T ′ + T ′ · T = 0 or 2T · T ′ = 0. Hence T and T ′ are orthogonal to each other.

Next note that T = g′

|g′| so g
′ = |g′|T . To get g′′ into the picture, differentiate this last equation with

respect to t using the Product Rule:

g′′ = |g′|T ′ + |g′|′T. Note that |g′| and |g′|′ are scalars.

Then
g′ × g” = g′ × (|g′|T ′ + |g′|′T ) = g′ × |g′|T ′ + g′ × |g′|′T

Now use g′ = |g′|T and that |g′| and |g′|′ are scalars to write

g′ × g” = |g′|T × |g′|T ′ + |g′|T × |g′|′T = |g′||g′|T × T ′ + |g′||g′|′T × T

Now T × T is zero T is parallel to itself so

g′ × g” = |g′||g′|(T × T ′) so |g′ × g”| = |g′|2||T × T ′|

But T and T ′ are orthogonal so the angle θ between them is π/2. Thus

|g′ × g”| = |g′|2||T ||T ′| sin π/2 = |g′|2||T ||T ′|1 = |g′|2|T ′| since |T | = 1

Dividing through by |g′|3 gives
|g′(t)× g′′(t)|
|g′(t)|3 = |T

′|
|g′|

= κ


