MATH 223

Some Notes on Assignment 29 Exercises 23 and 30 of Chapter 7.

23 Find the surface area of a circular cylinder of radius *r* and height *h* by rotating the graph of $f(x) =$ $r, 0 \leq x \leq h$ about the *x*-axis.

Solution: Using the parametrization $g(t) = (t, r), 0 \le t \le h$, we have $g'(t) = (1, 0)$ so $g'(t) = 1$ and surface area is $\int_0^h 2\pi 1 dt = 2\pi h$.

30: Sketch the solid obtained by revolving the graph of $y = 4\sqrt[3]{x}$ from (8,8) to (27, 12) around the *y*−axis and determine its surface area.

solution: Let $g(t) = (t, 4\sqrt[3]{t}), 8 \le t \le 27$ be the parametrization. Then $g'(t) = (1, \frac{4}{3}t^{-2/3}) = (1, \frac{4}{3t^{2/3}})$ so √

$$
|g'(t)| = \sqrt{1 + \frac{16}{9t^{4/3}}} = \frac{\sqrt{9t^{4/3} + 16}}{3t^{2/3}}
$$

Then the surface area obtained by revolving about the **y** axis is

$$
\int_{8}^{27} 2\pi t \frac{\sqrt{9t^{4/3} + 16}}{3t^{2/3}} dt = 2\pi \int_{8}^{27} t^{1/3} \sqrt{9t^{4/3} + 16} dt
$$

$$
= 2\pi \frac{1}{54} \left[(9t^{4/3} + 16)^{3/2} \right]_{8}^{27}
$$

$$
= \frac{\pi}{27} \left(745^{3/2} - 160^{3/2} \right)
$$

Exercise A: A curve γ has the parametrization $g(t) = (t, 4 \cos t, 4 \sin t)$ Sketch the curve, find its curvature and show it is constant.

Solution: We have $g'(t) = (1, -4\sin t, 4\cos t)$ so $|g'(t)| = \sqrt{1 + 16\sin^2 t + 16\cos^t} = \sqrt{1 + 16} = \sqrt{17}$. Thus the unit tangent vector is $T = \frac{1}{\sqrt{17}}(1, -4\sin t, 4\cos t)$ and $T' = \frac{1}{\sqrt{17}}(0, -4\cos t, -4\sin t \text{ so } |T'| =$ $\frac{1}{\sqrt{2}}$ $\frac{1}{17}\sqrt{0+16\cos^2+16\sin^2t} = \frac{4}{\sqrt{17}}$. This curvature is $\kappa = \frac{|T'|}{|g'|}$ $\frac{|T'|}{|g'|} = \frac{4}{\sqrt{17}} \frac{1}{\sqrt{17}} = \frac{4}{17}.$

Graph of $g(t) = (t, 4 \cos t, 4 \sin t), -2\pi \le t \le 2\pi$ Graph of $g(t) = (t^2, t), -2 \le t \le 2$

Exercise B: Sketch the curve with parametrization $g(t) = (t^2, t), -2 \le t \le 2$ and find its curvature at $t = 0$ and at $t = \sqrt{6}$.

Solution: \therefore We have $g'(t) = 2t, 1), |g'(t)| =$ √ $1 + 4t^2$ so

$$
T(t) = \left(\frac{2t}{\sqrt{1+4t^2}}, \frac{1}{\sqrt{1+4t^2}}\right) \text{ with } T'(t) = \left(\frac{2}{\sqrt{1+4t^2}}, \frac{-4t}{\sqrt{1+4t^2}}, \frac{-4t}{\sqrt{1+4t^2}}\right) \text{ and } |T'(t) = \frac{2}{1+4t^2}
$$

Thus
$$
\kappa(t) = \frac{2}{1+4t^2} \frac{1}{\sqrt{1+4t^2}} = \frac{2}{(1+4t^2)^{3/2}}
$$

which makes $\kappa(0) = 2$ and $\kappa($ $\sqrt{6}$) = $\frac{2}{(1+24)^{3/2}} = \frac{2}{5^3}$. **Exercise C:** Suppose the curve C in the plane is the graph of the real-valued function $y = f(x)$ of one variable. Show that its curvature is

$$
\frac{|f''(x)|}{(1+|f'(x)|^2)^{3/2}}
$$

Solution: To simplify the notation, we'll use F for the first derivative f' and S for the second derivative f'' , simply writing f for $f(x)$, F for $f'(x)$, and S for $f''(x)$.

Then the parametrization $g(x) = (x, f(x))$ has $g' = (1, F)$ so $|g'| =$ $\sqrt{1+F^2}$. Then

$$
T = \left(\frac{1}{\sqrt{1 + F^2}}, \frac{F}{\sqrt{1 + F^2}}\right) \text{ and } T' = \left(\frac{-FS}{(1 + F^2)^{3/2}}, \frac{S}{(1 + F^2)^{3/2}}\right)
$$

(leaving out some intermediate steps in calculating T') which makes

$$
|T'| = \sqrt{\frac{F^2 S^2 + S^2}{(1 + F^2)^3}} = \sqrt{\frac{S^2 (1 + F^2)}{(1 + F^2)^3}} = \sqrt{\frac{S^2}{(1 + F^2)^2}} = \frac{|S|}{1 + F^2}
$$

Thus $\kappa = \frac{|T'|}{|g'|} = \frac{|S|}{1 + F^2} \frac{1}{\sqrt{1 + F^2}} = \frac{|S|}{(1 + F^2)^{3/2}} = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}}$

Exercise D: If *C* is a curve in 3-dimensional space with parametrization $q(t)$, show that its curvature is given by

$$
\frac{|g'(t) \times g''(t)|}{|g'(t)|^3}
$$

Solution: Note first that $|T| = 1$ so $T \cdot T = |T|^2 = 1$. Taking the derivative of both sides with respect to *t*, we have $T \cdot T' + T' \cdot T = 0$ or $2T \cdot T' = 0$. Hence *T* and *T'* are orthogonal to each other.

Next note that $T = \frac{g'}{g'}$ $\frac{g'}{|g'|}$ so $g' = |g'|T$. To get g'' into the picture, differentiate this last equation with respect to *t* using the Product Rule:

 $g'' = |g'|T' + |g'|T$. Note that $|g'|$ and $|g'|'$ are scalars.

Then

.

$$
g' \times g" = g' \times (|g'|T' + |g'|'T) = g' \times |g'|T' + g' \times |g'|'T
$$

Now use $g' = |g'|T$ and that $|g'|$ and $|g'|'$ are scalars to write

$$
g' \times g" = |g'|T \times |g'|T' + |g'|T \times |g'|'T = |g'||g'|T \times T' + |g'||g'|T \times T
$$

Now $T \times T$ is zero *T* is parallel to itself so

$$
g' \times g" = |g'||g'| (T \times T')
$$
 so $|g' \times g"| = |g'|^2 ||T \times T'|$

But *T* and *T*['] are orthogonal so the angle θ between them is $\pi/2$. Thus

$$
|g' \times g"
$$
 | = $|g'|^2$ ||T||T' || sin $\pi/2$ = $|g'|^2$ ||T||T' | 1 = $|g'|^2$ ||T' || since |T| = 1

Dividing through by $|g'|^3$ gives

$$
\frac{|g'(t) \times g''(t)|}{|g'(t)|^3} = \frac{|T'|}{|g'|} = \kappa
$$