MATH 223 Some Notes on Assignment 27 Exercises 9ac, 10df, 13 and 16 of Chapter 7.

9ac: Compute the indicated line integrals $\int_{\gamma} \mathbf{F}$ for the given vector fields and parametrizations \mathbf{g} for γ

(a)
$$\mathbf{F} = (x, 2y, 3z), \mathbf{g}(t) = (t, t, t), 0 \le t \le 2$$

Solution: $\int_{\gamma} \mathbf{F} = \int_{0}^{2} (t, 2t, 3t) \cdot (1, 1, 1) dt = \int_{0}^{2} 6t dt = [3t^{2}]_{0}^{2} = 12.$
(b) $\mathbf{F} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \mathbf{g}(t) = (\cos t, \sin t), 0 \le t \le \pi$

(b) $\mathbf{F} = \left(\frac{1}{x^2 + y^2}, \frac{1}{x^2 + y^2}\right), \mathbf{g}(t) = (\cos t, \sin t), 0 \le t \le \pi$ Solution: $\int_{\gamma} \mathbf{F} = \int_{0}^{\pi} \left(\frac{1}{\cos^2 t + \sin^2 t}, \frac{1}{\cos^2 t + \sin^2 t}\right) \cdot (-\sin t, \cos t) dt = \int_{0}^{\pi} (1, 1) \cdot (-\sin t, \cos t) dt = \int_{0}^{\pi} -\sin t + \cos t dt = [\cos t + \sin t]_{0}^{\pi} = (-1 + 0) - (1 + 0) = -2.$

10df: Sketch the curves γ_1 and γ_2 given respectively by the parametrizations $\mathbf{g_1}(t) = (\cos t, \sin t), 0 \le t \le \pi/2$ and $\mathbf{g_2}(s) = (1 - s, s), 0 \le s \le 1$.

Then determine the line integral of the vector field \mathbf{F} along both γ_1 and γ_2 for each of the following vector fields:

(d) $\mathbf{F}(x,y) = (x,y)$ Solution: $\int_{\gamma_1} \mathbf{F} = \int_0^{\pi/2} (\cos t, \sin t) \cdot (-\sin t, \cos t) \, dt = \int_0^{\pi/2} 0 \, dt = 0$ $\int_{\gamma_2} \mathbf{F} = \int_0^1 (1-s,s) \cdot (-1,1) \, ds = \int_0^1 -1 + s + s \, ds = \int_0^1 2s - 1 \, ds = \left[s^2 - s\right]_0^1 = (1-1) - (0-0) = 0.$

(f)
$$\mathbf{F}(x,y) = (xy^2, x^2y)$$

Solution: $\int_{\gamma_1} \mathbf{F} = \int_0^{\pi/2} (\cos t \sin^2 t, \sin t \cos^2 t) \cdot (-\sin t, \cos t) dt = \int_0^{\pi/2} -\sin^3 t \cos t + \cos^3 t \sin t dt = \left[-\frac{\sin^4 t}{4} + -\frac{\cos^4}{4} \right]_0^{\pi/2} = [-1-0] - [-0-1] = -1+1=0$
 $\int_{\gamma_2} \mathbf{F} = \int_0^1 \left((1-s)s^2, (1-s)^2s \right) \cdot (-1,1) ds = \int_0^1 2s^3 - 3s^2 + s ds = \left[\frac{s^4}{2} - s^3 + \frac{s^2}{2} \right]_0^1 = 0.$

11: Calculate the line integral of the gradient of the Cobb-Douglas function $f(K, L) = 2K^{2/3}L^{1/3}$ of Example 2 along

- (a) the straight line between (1,1) and (27, 64)Solution: By the Fundamental Theorem, the line integral equals f(27, 64) - f(1,1) = 2(9)(4) - 2(1)(1) = 70
- (b) the level curve where f(K, L) = 1000. Solution: 0

13: If **F** is the vector field $F(S, I, R) = (-\beta SI, \beta SI - rI, rI)$, described in the SIR Epidemic Model (Example 4), find the line integral of **F** along the curve γ with parametrization $\mathbf{g}(t) = (t^2, t, t^2), 100 \leq t \leq 200$. Solution: $F(t^2, t, t^2) = (-\beta t^2 t, \beta t^2 t - rt, rt) = (-\beta t^3, \beta t^3 - rt, rt)$ and g'(t) = (2t, 1, 2t). Thus $F(g(t)) \cdot g'(t) = -2\beta t^4 + \beta t^3 - rt + 2rt^2$ the line integral is $\int_{100}^{200} -2\beta t^4 + \beta t^3 - rt + 2rt^2 dt = \left[-\frac{2}{5}\beta t^5 + \frac{1}{4}\beta t^4 + \frac{2}{[3}2rt^3 - \frac{1}{2}rt^2\right]_{100}^{200} = -123625000000\beta + \frac{13955000}{3}r$.

16: Let **F** be the vector field defined by $\mathbf{F}(x, y) = (-y^2, 2x^2)$.

(a) Sketch the vector field. Solution: See the Assignment 27 sheet.

- (b) Find two different curves connecting the points (0,0) and (2,4) so that the line integrals of **F** along the curves are different. Solution: Let g_1 be the straight line segment $g_1(t) = (t, 2t), 0 \le t \le 2$ with $g'_1(t) = (1, 2)$. Then $F(g_1(t)) \cdot g'_1(t) = (-4t^2, 2t^2) \cdot (1, 2) = -4t^2 + 4t^2 = 0$ so $\int_{g_1} \mathbf{F} = 0$ Let $g_2(t) = (t, t^2), 0 \le t \le 2$ with $g'_2(t) = (1, 2t)$. Then $F(g_2(t)) \cdot g'_1(t) = (-t^4, 2t^2) \cdot (1, 2t) = -t^4 + 4t^3$ so $\int_{g_2} \mathbf{F} = \int_0^2 -t^4 + 4t^3 dt = \frac{48}{5}$
- (c) Find a closed curve γ in the plane where the starting point is the same as the ending point but $\int_{\gamma} \mathbf{F}$ is not zero. Solution: Let γ be the path that starts at (0,0), runs along g_1 to (2,4) and then runs back along g_2 to (0,0).
- (d) Explain why parts (b) and (c) each allow you to conclude that F is not a gradient field. Solution: For a gradient field, the line integrals between the same pair of points should be equal and the integral around a closed curve should be 0 if the vector field is continuous everywhere.