A Give a careful argument that the limit of a function whose values are all non-negative can not be negative.

Solution: Suppose to the contrary that there is a function *f* and a point **a** such that $f(\mathbf{x}) \ge 0$ for all **x** but

$$
\lim_{\mathbf{x} \to \mathbf{a}} f(x) = B
$$

where B is a negative number.

Let $r = |B|/2$ and N be the *r*-neighborhood of B. Note that this neighborhood is just the interval from $B - |B|/2$ to $B + |B|/2$. [Example: if $B = -4$, then N is open interval $-6 < t < -2$]. Observe that every number in $\mathcal N$ is negative. Since the limit exists, there is some neighborhood $\mathcal M$ of **a** such that if *x* is in M (and different from **a**), then $f(x)$ must lie in N. That would make $f(x)$ negative, contradicting our assumption that all values of the function are non-negative.

- **B** Verify that Leibniz's Rule is correct for each of the following:
	- 1. $\int_3^9 (x^2 + y^2) dy$ *Solution:* $F(x) = \int_3^9 (x^2 + y^2) dy = \left[x^2 y + \frac{y^3}{3} \right]$ $\left[\frac{y^3}{3}\right]_{y=2}^{y=9}$ $y=3$ $\left(9x^2 + \frac{9^3}{3}\right)$ $\left(3x^2 + \frac{3^3}{3}\right)$ $\left(\frac{3^3}{3}\right) = 6x^2 + \frac{9^3}{3} - \frac{3^3}{3}$ 3 so $F'(x) = 12x$. Leibniz's Rules gives $F'(x) = \int_3^9 (x^2 + y^2)_x dy = \int_3^9 2x dy = [2xy]_{y=3}^{y=9}$ $18x - 6x = 12x$.
	- 2. $\int_2^5 x + y^{-3} dy$

Solution:. Let $F(x) = \int_2^5 (x + y^{-3}) dy$. 2 Then direct calculation gives $F(x) = \left[xy - \frac{1}{2}y^{-2}\right]_{y=2}^{y=5} = (5x - \frac{1}{50}) - (2x - \frac{1}{8}) = 3x + \frac{21}{200}$ so $F'(x) = 3$. Leibniz's Rule gives $F'(x) = \int_2^5 (x + y^{-3})_x dy = \int_2^5 1 dy = 3$

3. $F(x) = \int_1^e xy + \ln y - \arctan y \, dy$

Solution: A direct calculation involves using integration by parts to show that $\int \ln y \, dy =$ *y* ln *y* − *y* and integration by parts again to show that $\int \arctan y \, dy = y \arctan y - \frac{\ln(1+y^2)}{2}$ 2 Thus

$$
\int_{1}^{e} (xy + \ln y - \arctan y \, dy = \left[\frac{xy^{2}}{2} + y \ln y - y - y \arctan y + \frac{\ln(1 + y^{2})}{2} \right]_{y=1}^{y=e}
$$

which equals

 $\frac{e^2x}{2} - e \arctan e + \frac{\ln(1+e^2)}{2} + \frac{x}{2} - \frac{\pi}{4} + \frac{\ln 2}{2} - 1$ whose derivative with respect to *x* is $\frac{e^2-1}{2}$ Leibniz's Rule gives $F'(x) = \int_1^e (xy + \ln y - \arctan y)_x dy = \int_1^e y dy = \left[\frac{y^2}{2}\right]$ $\left[\frac{y^2}{2}\right]_1^e$ $\frac{e}{1} = \frac{e^2 - 1}{2}$

C Use Leibniz's Rule to determine $F'(x)$ if $F(x) = \int_0^1 2 \frac{\sin xy}{y} dy$. *Solution:* By Leibniz's Rule

$$
F'(x) = \int_0^{12} \left(\frac{\sin xy}{y}\right)_x \, dy = \int_0^{12} \frac{1}{y} \cos (xy)y \, dy = \int_0^{12} \cos(xy) \, dy = \left[\frac{1}{x} \sin(xy)\right]_{y=0}^{y=12} = \frac{\sin 12x}{x}
$$

D Use Leibniz's Rule to determine $G'(y)$ if $G(y) = \int_{-5}^{5} \frac{1 - e^{-xy}}{x}$ $\frac{e^{-x}y}{x}$ dx. *Solution:* By Leibniz's Rule

$$
G'(y) = \int_{-5}^{5} \left(\frac{1 - e^{-xy}}{x} \right)_y dx = \int_{-5}^{5} \frac{1}{x} (-e^{-xy})(-x) dx = \int_{-5}^{5} e^{-xy} dx = \left[\frac{e^{-xy}}{-y} \right]_{x=-5}^{x=5} = \frac{e^{5y} - e^{-5y}}{y}
$$