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MATH 223
Some Notes on Assignment 22

Exercises 8, 9, 10, 11 and 12 in Chapter 6

8: Determine the integral of f(x, y) = x2 + y2 over the region bounded by the x-axis and the top half of
the unit circle centered at the origin.

Solution: Figure 1 shows the region. Carving thee region into vertical lines, we see that or each x
between -1 and 1, a vertical segment runs from the horizontal axis up to the semicircle; that is, y = 0 to
y =
√

1− x2. Thus the value of the integral is

ˆ x=1

x=−1

ˆ y=
√

1−x2

y=0
x2 + y2 dy dx =

ˆ x=1

x=−1

[
x2y + y3

3

]y=
√

1−x2

y=0
dx =

ˆ x=1

x=−1
x2
√

1− x2 + (1− x2)3/2

3 dx

The last integral can be solved in a variety of ways including integration by parts, the substitution
x = sin θ, and the recognition that

´ 1
−1
√

1− x2 dx is the area π/2 of a semicircle of radius 1. The
indefinite integral is x

√
1−x2

4 − x(1−x2)3/2

4 + arcsin x
8 . The first two terms yield 0 when compute the definite

inetgral so the value of the original iterated integral is 1
8 (arcsin 1−arcsin−1) = 1

8 (π/2− (−pi/2)) = π/4.

Figure 1: Region of Exercise 8 Figure 2: Region of Exercise 9

9: Find the value of the integral of f(x, y) = x2 +y2 over the region enclosed by the triangle with vertices
(0,0), (0,1), and (1,1).
Solution: Figure 2 shows the region. Each horizontal slice runs from x = 0 to x = y and we have a
horizontal slice for each y from 0 to 1. Thus we can evaluate the integral as´ y=1

y=0
´ x=y

x=0 x
2 + y2 dx dy =

´ y=1
y=0

[
x3

3 + xy2
]x=y

x=0
dy =

´ y=1
y=0

y3

3 + y3 dy =
´ y=1

y=0
4
3y

3 dy =
[

y4

3

]1

0
= 1

3

10: Evaluate the integral of 2x+3y+4z over the region enclosed by the tetrahedron with vertices (0,0,0),
(0,0,3), (0,2,0), and (1,0,0).

Solution: Figure 3 shows the tetrahedron. Three of its four sides are the coordinate planes and the fourth
is the plane with equation x

1 + y
2 + z

3 = 1.. You can set up the order of integration in 6 possible ways.
We’ll do it as

˝
2x+ 3y + 4z dz dy dx. Figures 4, 5 and 6 display the xy, xz and yz slices respectively.

Figure 3
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xy- slice; z = 0 xz-slice: y = 0 yz-slice:x = 0
y = 2− 2x z = 3− 3x z = 3− 3

2y
Figure 4 Figure 5 Figure 6

Solving the plane equation for z, we have z = 3− 3x− 3
2y and from Figure 4, we have y = 2− 2x so the

the triple integral is
ˆ x=1

x=0

ˆ y=2−2x

y=0

ˆ z=3−3x− 3
2 y

z=0
(2x+ 3y + 4z) dz dy dx

which equals

ˆ x=1

x=0

ˆ y=2−2x

y=0
12x2 + 6xy − 30x− 9y + 18 dy dx =

ˆ x=1

x=0
−12x3 + 42x2 − 48x+ 18 dx = 5

11: Determine the volume bounded by the coordinate axes and the plane x
a + y

b + z
c = 1.

Solution: Proceed as in Exercise 10. The vertices of the region are (a, 0, 0), (0, b, 0), (0, 0, c)

Volume is
ˆ x=a

x=0

ˆ y=b− b
a x

y=0

ˆ z=c− c
a x− c

b y

z=0
1 z dy dx = abc

6

12: Find the volume of the solid bounded by the surfaces y2 + z2 = 4ax, x = 3a, and y2 = ax.

The equations x = 3a and y2 = ax define a figure in the plane bounded by a parabola and a straight
line segment. See Figure 7 in red below. The line segment and the parabola intersect at the points
(3a,±

√
3a). A double integral over this region would be written as

ˆ x=3a

x=0

ˆ √ax

y=−
√

ax

f(x, y) dy dx

if we imagine the region carved into vertical slices.



3

Figure 7 Figure 8

Figure 8 displays a graph of the surface defined by y2 + z2 = 4ax.

We can solve the remaining equation y2 + z2 = 4ax for z in terms of x and y:

z = ±
√

4ax− y2

. To find the volume of the solid, we set up the triple integral

V =
ˆ x=3a

x=0

ˆ √ax

y=−
√

ax

ˆ z=
√

4ax−y2

z=−
√

4ax−y2
1 dz dy dx

Carrying out the integral with respect to z, we have

V =
ˆ x=3a

x=0

ˆ √ax

y=−
√

ax

2
√

4ax− y2 dy dx

One way to do the integration with respect to y is to let A = 4ax and use the trig substitution sin θ =
y/
√
A which converts

ˆ √
A− y2 dy to

ˆ
A cos2 θ dθ = A

2 [θ + sin θ cos θ] = 1
2

[
A arcsin y√

A
+ y
√
A− y2

]
Substituting 4ax for A, the last expression becomes

1
2

[
4ax arcsin y

2
√
ax

+ y
√

4ax− y2
]

Now we evaluate this expression at y =
√
ax and y = −

√
ax and compute the difference. At y =

√
ax,

we obtain

1
2

[
4axx arcsin

√
ax

2
√
ax

+
√
ax
√

4ax− ax
]

= 1
2

[
4ax arcsin 1

2 +
√
ax
√

3ax
]

= 1
2

[
4axπ6 +

√
ax
√
ax
√

3
]

= 1
2ax

[
2π
3 +

√
3
]

The value at y = −
√
ax is the negative of this value. Hence the volume becomes

V =
ˆ x=3a

x=0
ax

[
2π
3 +

√
3
]
dx = 9

2a
3
[

2π
3 +

√
3
]

= a3
[
3π + 9

2
√

3
]


