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MATH 223
Some Notes on Assignment 19

Exercises 18ad, 19ac, 25 and 26 in Chapter 5

18: Find, if they exist, the highest and lowest points on each of the following surfaces

• (a) z = x2 − xy + 4x+ y2 + 6y + 25 + 1/3

• (d) z = x2 + xy + 3x+ 2y

Solution: If we write each equation as a function of x and y such that f(x, y) = z, then each function
is real-valued and continuous on all of R2. If there is a highest or lowest point of the function, then the
gradient will be zero when evaluated at that point.

a) Because f(x, y) is continuous on all of R2, if it does achieve a maximum or minimum somewhere, then
the gradient will be the zero vector at that point. The gradient of f is ∇f = (2x − y + 4, 2y − x + 6).
Wherever the gradient is the zero vector we have

2x− y + 4 = 0⇒ 2x+ 4 = y

2y − x+ 6 = 0⇒ 2(2x+ 4)− x+ 6 = 0⇒ x = −14
3 .

Substituting this value for x into either of the partial derivatives we find that f has exactly one critical
point at

(−14
3 , −16

3
)
. Now does f have an extreme value at this point? Is is a minimum? A maximum?

A saddle point? We will need to use the second derivative test in order to determine its nature. The
derivative of the gradient of f is a two by two Hessian matrix in which each row is the partial derivatives
of the components of the gradient.

H =
(

2 −1
−1 2

)
To determine whether or not this is a positive or negative definite matrix we inspect the values of x ·Hx
for an arbitrary vector x = (x1, x2).

x ·Hx = x · (2x1 − x2, 2x2 − x1)

x ·Hx = 2(x2
1 − x1x2 + x2

2)

If x1 and x2 have different signs, then the right hand side of this equation is positive. If x and y have
the same sign and are equal then we have x2

1−x1x2 +x2
2 = x2

1. In the case that x1 and x2 have the same
sign and (without loss of generalization) x1 < x2 we have

x2
1 − x1x1 + x2

1 < x2 − x1x2 + x2
2

0 < x2
1 < x2

1 − x1x2 + x2
2.

x ·Hx is then positive for all non zero vectors x, and H is positive definite. Theorem 5.6.4 promises that
if a function f has continuous third order partial derivatives and the Hessian matrix of f at a critical
point is positive-definite, then the critical point is a relative minimum. The third order partial derivatives
of f are all 0, and the Hessian matrix at

(−14
3 , −16

3
)
is positive definite; thus, this point is a relative

minimum. Because f is continuous and there are no other critical points, f achieves its minimum value
at this point. The minimum value of f is f

(−14
3 , −16

3
)

= 0.
d) If we write z as a function of x and y we have f(x, y) = x2 + xy + 3x + 2y. The gradient of f is
∇f = (2x+y+3, x+2). Letting each partial derivative of f equal 0 and solving for x and y we find that
(−2, 1) is a critical point of f . Furthermore, f(−2, 1) = −2. To determine whether or not this point is
an extreme, we need to investigate the Hessian matrix of f evaluated at the critical point. The Hessian
of f is

H =
(

2 1
1 0

)
at all points in the domain of f . This matrix has eigenvalues, λ, wherever the matrix(

2− λ 1
1 0− λ

)
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has a determinant of 0. Applying the Quadratic formula to the determinant of the matrix we find
λ = 1 ±

√
2. Thus, the Hessian matrix has one positive eigenvalue and one negative eigenvalue; it is

neither positive definite nor negative definite. The critical point (−2, 1) is a saddle point and not an
extreme of f . As there are no other critical points of f and the function is continuous for all (x, y), there
must be no highest and lowest values of f(x, y) = z.

19: Graph level curves for each of the following real-valued function of two variables and then determine
and classify each of the critical points: (a). f(x, y) = x3 − y3 and (c) f(x, y) = 1

ex2+Y 2

Solution: (a) A critical point of f is any point (x, y) such that ∇f(x, y) = (0, 0). The gradient of f is
∇f(x, y) = (3x2,−3y2). The only point at which the gradient is the zero vector is the origin; thus, the
origin is the only critical point. To determine whether f achieves a local maximum, minimum or neither
at this point we must inspect the Hessian matrix of f . Taking the partial derivatives with respect to x
and y of each function in the gradient we have

H =
(

6x 0
0 −6y

)
.

Evaluated at the origin the Hessian of f is

H =
(

0 0
0 0

)
.

For any arbitrary 2 by 1 vector x, x ·Hx = 0, so H is neither positive nor negative definite. The function
f then has a saddle point at the origin.

Figure 1: Level curves for the function f(x, y) = x3 − y3.

(c) If f(x, y) = 1
ex2+y2 then the gradient of f is ∇f =

(
−2x
ee+y2 ,

−2y
ex2+y2

)
. We can see that the partial

derivative fx will only be 0 when x = 0 and the partial derivative fy will only be 0 when y = 0; thus,
the only critical point of f is the origin. To find the Hessian matrix of f we must find all 4 second order
partial derivatives of f . Applying the quotient rule to fx we find

fxx = ex
2+y2(−2)− (−2x)ex2+y2(2x)

e2(x2+y2)

fxx = 4x2 − 2
ex2+y2

Differentiating fx with respect to y we have

fxy = 4xy
e2(x2+y2
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Notice that if we substitute x for y in the partial derivative fy we get fy = fx. We can then substitute
y for x in the two second order partial derivatives above to find fyy and fyx.

fyy = 4y2 − 2
ex2+y2

fyx = 4xy
e2(x2+y2

The Hessian matrix of f is

H =
(

4x2−2
ex2+y2

4xy
e2(x2+y2

4y2−2
ex2+y2

4xy
e2(x2+y2

)
.

Evaluating the Hessian at the origin we find

H =
(
−2 0
0 −2

)
.

The eigenvalues of this matrix are all values, λ, such that det(H − λI) = 0.

det(H − λI) = 0 = (−2− λ)2 ⇒ λ = −2

The only eigenvalue of H is −2. Hessian matrices with only negative eigenvalues are negative definite,
so H is negative definite and the origin is a local maximum of f .

Figure 2: Level curves for the function f(x, y) = 1
ex2+y2 .

25: Abigail, Anne and Sasha have an older brother Eli who is an applied mathematician. He realizes
that his siblings’ problems are specific instances of a more general problem

Maximize f(x, y) = kxαyβ subject to ax+ by = c

where a, b, c, k, α, and β are given positive constants with α+β = 1. Eli uses Lagrange’s method to solve
the problem. What does his solution look like?
Solution: Eli can solve the general case of the maximization problem using the same technique as
was applied in the specific case for each of his sisters. The function he is looking to maximize is
f(x, y) = kxαyβ with constraint g(x, y) = ax+ by− c = 0. Applying the method of Lagrange Multipliers
we have F (x, y, λ) = kxαyβ − λ(ax+ by − c). The gradient of this function is

∇F = (αkyβx−β − λa, βkxαy−αy−α − λb, c− ax− by).

F has a critical point when ∇F = (0, 0, 0) and

1. αkyβx−β − λa = 0,



4

2. βkxαy−αy−α − λb = 0,

3. c− ax− by = 0.

Multiply equation 1 by b and equation 2 by a we have

bαkyβx−β = aβkxαy−αy−α.

Making use of the fact that α+ β = 1 we simplify this equation to find

bαy = aβx

y = aβ

bα
x.

Substituting this value into equation 3 we can solve for x in terms of the given constants.

c− ax− baβ
bα
x = 0

ax+ aβx

α
= c

x

(
aα

α
+ aβ

α

)
= c

x

(
a(α+ β)

α

)
= c

x = cα

a
⇒ y = cβ

b
.

The functions F (x, y, λ) has a critical point when x = cα
a and y = cβ

b ; thus f is maximized at this point.

26: Use the method of Lagrange multipliers to investigate solving the problem

Maximize f(x, y, z) = kxαyβzγ subject to ax+ by + cz = d

where a, b, c, d, k, α, β, and γ are given positive constants with α + β + γ = 1. Solution: We can apply
Lagrange Multipliers to a function of three variables using the same method as in the two variable case.
First, we must recognize that the function being maximized if f(x, y, z) = kxαyβzγ and the constraint on
x, y, and z is ax+ by+ cz = d. Just as in the two variable case we must form a new function F (x, y, z, λ)
which has a critical point at the maximum of f .

F (x, y, z, λ) = kxαyβzγ − λ(ax+ by + cz − d)

∇F =
(
αkxα−1yβzγ − λa, βkxαyβ−1zγ − λb, γkxαyβzγ−1 − λc, d− ax− by − cz

)
Wherever F has a critical point we have

1. αkxα−1yβzγ = λa

2. βkxαyβ−1zγ = λb

3. γkxαyβzγ−1 = λc

4. ax+ by + cz = d.

Multiplying equation 1 by b and equation 2 by a we find

aαbkxα−1yβzγ = aβkxαyβ−1zγ

y = aβ

bα
x.

Now that we have solved for y in terms of x we can use the same procedure to solve for z in terms of x.
Multiplying 1 by c and 3 by a reveals

cαbkxα−1yβzγ = aγkxαyβzγ−1
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z = aγ

cα
x

Now that we have solved for both y and z, we can substitute the results into equation 4 and solve for x
in terms of the given constants.

ax+ b
aβ

bα
x+ c

aγ

cα
x = d

ax(α+ β + γ

α
) = d

Recall that the numerator in the lefthand side of this last equation is equal to 1.

ax

α
= d⇒ x = dα

a

Applying the equations we found relating x to y and x to z we have y = dβ
b , and z = dγ

c . The function F
has a critical point at

(
dα
a ,

dβ
b ,

dγ
c , λ

)
; therefore, f reaches its maximum with respect to the constraint

function at
(
dα
a ,

dβ
b ,

dγ
c

)
.


