7: *Solution:* a)

Figure 1: The function $f(x)$ plotted over the interval $[-.5, .5]$.

b) In the case that *x* is $0, f(x) = 0$ and both proposed inequalities are true. In the case that *x* does not equal 0, recall that the sin *x* function is bounded by 1 and -1 for all values of *x*. We then have

$$
-2x^2 \le 2x^2 \sin \frac{1}{x} \le 2x^2.
$$

Adding *x* to each term in the inequality gives

$$
x - 2x^{2} \le x + 2x^{2} \sin \frac{1}{x} \le x + 2x^{2}.
$$

$$
x - 2x^{2} \le f(x) \le x + 2x^{2}.
$$

The value $2x^2$ is nonnegative for all *x*, so

$$
-2x^2 \le 0 \le 2x^2.
$$

Adding an *x* to each term in the previous inequality gives

$$
x - 2x^2 \le x \le x + 2x^2.
$$

c) Consider the value of $f'(x)$ at $x_1 = \frac{1}{2k\pi}$ and $x_2 = \frac{1}{(2k+1)\pi}$ where *k* is a nonzero integer. We have

$$
f'(x_1) = 1 + \frac{4}{2k\pi} \sin 2k\pi - 2\cos 2k\pi.
$$

Note that wherever *x* is an even multiple of π , $\sin x$ is 0 and $\cos x$ is 1.

$$
f'(x_1) = -1.
$$

At the point *x*² we have

$$
f'(x_2) = 1 + \frac{4}{(2k+1)\pi} \sin (2k+1)\pi - 2\cos (2k+1)\pi).
$$

The sin *x* term here will also always be 0, but the cos *x* term will be -1 .

$$
f'(x_2)=3.
$$

Because 0 is not included in the interval $[x_1, x_2]$, $f'(x)$ is always continuous on this interval. The Intermediate Value Theorem promises that there exists a point *c* included in $[x_1, x_2]$ such that $f'(c) = 0$. For any arbitrary neighbourhood of 0, M, there are infinitely many values of *k* for which x_1, x_2 , and *c* are all included in *M*; therefore, any *M* includes infinitely many *x* such that $f'(x) = 0$.

d) Wherever *x* is non zero we, $f(x)$ is the composition of differentiable functions and is therefore differentiable. At $x = 0$ we have

$$
f'(0) = \lim_{h \to 0} m \frac{h + 2h^2 \sin \frac{1}{h}}{h}
$$

$$
f'(0) = \lim_{h \to 0} 1 + 2h \sin \frac{1}{h}
$$

The sin function is bounded above and below by 1 and -1 so we can write

$$
\lim_{h \to 0} 1 - 2h \le \lim_{h \to 0} 1 + 2h \sin \frac{1}{h} \le \lim_{h \to 0} 1 + 2h
$$

$$
1 \le f'(0) \le 1 \Rightarrow f'(0) = 1.
$$

We could use the method applied in part c to show that f' achieves the value 1 at infinitely many places in an arbitrary neighbourhood of 0 . The function f' then achieves the values 0 and 1 in any arbitrary neighbourhood of 0 and cannot be continuous at $x = 0$. If f' is not continuous at 0 it is also not differentiable.

Solution: **8ab:** a) $\nabla f = (2, 3)$

b) $\nabla f = (2x, 2y)$

10: *Solution:* atBarrier 10. a)

								\\\\ \ \ 〜 〜 + → → ノノノノノノ/			
								ヽヽヽヽヽヽヽヽーーー - - - - - - 1 1 1 1			
					ファンファンシュート			- - - - - - - - - -			
								\ \ \ \ \ \ \ ~ - -¦- - - - 1 1 1 1 1 1			
								\\\\\ \ -゚ - ^{0.5-} - - - - - - - 1 1 1 1 1			
								ししししししゃ - -1- シンノノノノノ!			
								ししししししゃ - -1- シンファブリブリ			
								. 1 1 1 1 1 2 3 3 3 4 5 6 7 8 9 1 1 1 1 1 1			
								$1 + 1 + 1 - 0.5 + \cdots + 0 + \cdots + 0.5 + 1$			
			$[1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3]$ - \sim \sim \sqrt{x} $\sqrt{1-x}$								
								1 1 1 1 1 1 1 2 2 2 2 3 4 5 6 6 7 8 7 8 7 8 7			

Figure 2: The vector field $\mathbf{F}(x, y) = (y, x)$.

b)

Figure 3: The vector field $\mathbf{F}(x, y) = (0, y)$.

Figure 4: The vector field $\mathbf{F}(x, y) = \nabla(\ln x^2 + y^2)$.

11: *Solution:* From Example 3 in the Gradient Field section of the text, we know that if a vector field $\mathbf{F}(x, y) = (g(x, y), h(x, y))$ does not have the property $g_y = h_x$, then it is not a Gradient Field. Thus, in order to prove that a given Vector field is not a gradient we must show that the partial derivatives are unequal.

a) If $\mathbf{F}(x, y) = (2x^2y^2, x^3e^y)$ then the partial derivatives of the component functions are $(2x^2y^2)_y = 4x^2y$ and $(x^3e^y)_x = 3x^2e^y$. The partial derivatives with respect to *x* and *y* are not equal so this is not a gradient field.

b) If $\mathbf{F}(x, y) = (\sin y, \sin x)$ then the partial derivatives of the component functions are $(\sin y)_y = \cos y$ and $(\sin x)_x = -\cos x$. The partial derivatives are not equivalent so The given vector field is not a gradient field.

c) If $\mathbf{F}(x,y) = (xe^{x^2y^2}, ye^{x^2y^2})$, then the partial derivatives of interest are $(xe^{x^2y^2})_y =$ $2x^3ye^{x^2y^2}$ and $(ye^{x^2y^2})_x = 2xy^3e^{x^2y^2}$. The partial derivatives with respect to *x* and *y* are not equivalent, so **F** is not a gradient field.

12: *Solution:* For **F**(*x, y, z*) to be a gradient field, each second order mixed partial derivative must be equal regardless of order of differentiation. Not only does *G^y* need to be equal to H_x , but we must have $G_z = K_x$ and $H_z = K_y$. Differentiating G with respect to *y* and *K* with respect to *x* we find $G_z = y$ and $K_x = 2x$, so $G_z \neq K_x$.