7: Solution: a)

Figure 1: The function f(x) plotted over the interval [-.5, .5].

b) In the case that x is 0, f(x) = 0 and both proposed inequalities are true. In the case that x does not equal 0, recall that the sin x function is bounded by 1 and -1 for all values of x. We then have

$$-2x^2 \le 2x^2 \sin\frac{1}{x} \le 2x^2.$$

Adding x to each term in the inequality gives

$$x - 2x^2 \le x + 2x^2 \sin \frac{1}{x} \le x + 2x^2$$
.
 $x - 2x^2 \le f(x) \le x + 2x^2$.

The value $2x^2$ is nonnegative for all x, so

$$-2x^2 \le 0 \le 2x^2.$$

Adding an x to each term in the previous inequality gives

$$x - 2x^2 \le x \le x + 2x^2.$$

c) Consider the value of f'(x) at $x_1 = \frac{1}{2k\pi}$ and $x_2 = \frac{1}{(2k+1)\pi}$ where k is a nonzero integer. We have

$$f'(x_1) = 1 + \frac{4}{2k\pi} \sin 2k\pi - 2\cos 2k\pi.$$

Note that wherever x is an even multiple of π , sin x is 0 and cos x is 1.

$$f'(x_1) = -1$$

At the point x_2 we have

$$f'(x_2) = 1 + \frac{4}{(2k+1)\pi} \sin((2k+1)\pi) - 2\cos((2k+1)\pi).$$

The sin x term here will also always be 0, but the $\cos x$ term will be -1.

$$f'(x_2) = 3.$$

Because 0 is not included in the interval $[x_1, x_2]$, f'(x) is always continuous on this interval. The Intermediate Value Theorem promises that there exists a point c included in $[x_1, x_2]$ such that f'(c) = 0. For any arbitrary neighbourhood of 0, \mathcal{M} , there are infinitely many values of k for which x_1, x_2 , and c are all included in \mathcal{M} ; therefore, any \mathcal{M} includes infinitely many x such that f'(x) = 0.

d) Wherever x is non zero we, f(x) is the composition of differentiable functions and is therefore differentiable. At x = 0 we have

$$f'(0) = \lim_{h \to 0} m \frac{h + 2h^2 \sin \frac{1}{h}}{h}$$
$$f'(0) = \lim_{h \to 0} 1 + 2h \sin \frac{1}{h}$$

The sin function is bounded above and below by 1 and -1 so we can write

$$\lim_{h \to 0} 1 - 2h \le \lim_{h \to 0} 1 + 2h \sin \frac{1}{h} \le \lim_{h \to 0} 1 + 2h$$
$$1 \le f'(0) \le 1 \Rightarrow f'(0) = 1.$$

We could use the method applied in part c to show that f' achieves the value 1 at infinitely many places in an arbitrary neighbourhood of 0. The function f' then achieves the values 0 and 1 in any arbitrary neighbourhood of 0 and cannot be continuous at x = 0. If f' is not continuous at 0 it is also not differentiable.

Solution: 8ab: a) $\nabla f = (2,3)$

b) $\nabla f = (2x, 2y)$

10: Solution: atBarrier 10. a)

Figure 2: The vector field $\mathbf{F}(x, y) = (y, x)$.

b)

Figure 3: The vector field $\mathbf{F}(x, y) = (0, y)$.

Figure 4: The vector field $\mathbf{F}(x, y) = \nabla(\ln x^2 + y^2)$.

11: Solution: From Example 3 in the Gradient Field section of the text, we know that if a vector field $\mathbf{F}(x, y) = (g(x, y), h(x, y))$ does not have the property $g_y = h_x$, then it is not a Gradient Field. Thus, in order to prove that a given Vector field is not a gradient we must show that the partial derivatives are unequal.

a) If $\mathbf{F}(x, y) = (2x^2y^2, x^3e^y)$ then the partial derivatives of the component functions are $(2x^2y^2)_y = 4x^2y$ and $(x^3e^y)_x = 3x^2e^y$. The partial derivatives with respect to x and y are not equal so this is not a gradient field.

b) If $\mathbf{F}(x, y) = (\sin y, \sin x)$ then the partial derivatives of the component functions are $(\sin y)_y = \cos y$ and $(\sin x)_x = -\cos x$. The partial derivatives are not equivalent so The given vector field is not a gradient field.

c) If $\mathbf{F}(x, y) = (xe^{x^2y^2}, ye^{x^2y^2})$, then the partial derivatives of interest are $(xe^{x^2y^2})_y = 2x^3ye^{x^2y^2}$ and $(ye^{x^2y^2})_x = 2xy^3e^{x^2y^2}$. The partial derivatives with respect to x and y are not equivalent, so **F** is not a gradient field.

12: Solution: For $\mathbf{F}(x, y, z)$ to be a gradient field, each second order mixed partial derivative must be equal regardless of order of differentiation. Not only does G_y need to be equal to H_x , but we must have $G_z = K_x$ and $H_z = K_y$. Differentiating G with respect to y and K with respect to x we find $G_z = y$ and $K_x = 2x$, so $G_z \neq K_x$.