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MATH 223
Some Notes on Assignment 15

Exercises 7, 8ab, 10, 11, and 12 in Chapter 5.

7: Solution: a)

Figure 1: The function f(x) plotted over the interval [−.5, .5].

b) In the case that x is 0, f(x) = 0 and both proposed inequalities are true. In the case
that x does not equal 0, recall that the sin x function is bounded by 1 and −1 for all
values of x. We then have

−2x2 ≤ 2x2 sin 1
x
≤ 2x2.

Adding x to each term in the inequality gives

x− 2x2 ≤ x+ 2x2 sin 1
x
≤ x+ 2x2.

x− 2x2 ≤ f(x) ≤ x+ 2x2.

The value 2x2 is nonnegative for all x, so

−2x2 ≤ 0 ≤ 2x2.

Adding an x to each term in the previous inequality gives

x− 2x2 ≤ x ≤ x+ 2x2.

c) Consider the value of f ′(x) at x1 = 1
2kπ and x2 = 1

(2k+1)π where k is a nonzero integer.
We have

f ′(x1) = 1 + 4
2kπ sin 2kπ − 2 cos 2kπ.

Note that wherever x is an even multiple of π, sin x is 0 and cosx is 1.

f ′(x1) = −1.

At the point x2 we have

f ′(x2) = 1 + 4
(2k + 1)π sin (2k + 1)π − 2 cos (2k + 1)π).
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The sin x term here will also always be 0, but the cosx term will be −1.

f ′(x2) = 3.

Because 0 is not included in the interval [x1, x2], f ′(x) is always continuous on this in-
terval. The Intermediate Value Theorem promises that there exists a point c included in
[x1, x2] such that f ′(c) = 0. For any arbitrary neighbourhood of 0,M, there are infinitely
many values of k for which x1, x2, and c are all included inM; therefore, anyM includes
infinitely many x such that f ′(x) = 0.

d) Wherever x is non zero we, f(x) is the composition of differentiable functions and
is therefore differentiable. At x = 0 we have

f ′(0) = lim
h→0

m
h+ 2h2 sin 1

h

h

f ′(0) = lim
h→0

1 + 2h sin 1
h

The sin function is bounded above and below by 1 and −1 so we can write

lim
h→0

1− 2h ≤ lim
h→0

1 + 2h sin 1
h
≤ lim

h→0
1 + 2h

1 ≤ f ′(0) ≤ 1⇒ f ′(0) = 1.

We could use the method applied in part c to show that f ′ achieves the value 1 at in-
finitely many places in an arbitrary neighbourhood of 0. The function f ′ then achieves
the values 0 and 1 in any arbitrary neighbourhood of 0 and cannot be continuous at
x = 0. If f ′ is not continuous at 0 it is also not differentiable.

Solution: 8ab: a) ∇f = (2, 3)

b) ∇f = (2x, 2y)
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10: Solution: atBarrier 10. a)

Figure 2: The vector field F(x, y) = (y, x).

b)
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Figure 3: The vector field F(x, y) = (0, y).

c)

Figure 4: The vector field F(x, y) = ∇(ln x2 + y2).

11: Solution: From Example 3 in the Gradient Field section of the text, we know that
if a vector field F(x, y) = (g(x, y), h(x, y)) does not have the property gy = hx, then it is
not a Gradient Field. Thus, in order to prove that a given Vector field is not a gradient
we must show that the partial derivatives are unequal.
a) If F(x, y) = (2x2y2, x3ey) then the partial derivatives of the component functions are
(2x2y2)y = 4x2y and (x3ey)x = 3x2ey. The partial derivatives with respect to x and y are
not equal so this is not a gradient field.
b) If F(x, y) = (sin y, sin x) then the partial derivatives of the component functions are
(sin y)y = cos y and (sin x)x = − cosx. The partial derivatives are not equivalent so The
given vector field is not a gradient field.
c) If F(x, y) = (xex2y2

, yex
2y2), then the partial derivatives of interest are (xex2y2)y =

2x3yex
2y2 and (yex2y2)x = 2xy3ex

2y2 . The partial derivatives with respect to x and y are
not equivalent, so F is not a gradient field.

12: Solution: For F(x, y, z) to be a gradient field, each second order mixed partial
derivative must be equal regardless of order of differentiation. Not only does Gy need to
be equal to Hx, but we must have Gz = Kx and Hz = Ky. Differentiating G with respect
to y and K with respect to x we find Gz = y and Kx = 2x, so Gz 6= Kx.


