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MATH 223
Some Notes on Assignment 10

Exercises 3, 7, 10, 15, and 16 in Chapter 4.

3. In our proof of part (e) of Theorem 4.1.1, we claimed that |g(x) −M | < |M |
2 implies

that |g(x)| > |M |
2 . Show that this claim is true.

Solution: Suppose that |M − g(x)| < |M |
2 . Note that, |M − g(x)| = |g(x) −M |. The

inequality is then equivalent to

|M − g(x)| < |M |2 .

Adding the absolute value of g(x) to both sides we find

|M − g(x)|+ |g(x)| < |M |2 + |g(x)|.

Using the Triangle Inequality on the left hand side of the inequality we get

|M | ≤ |M − g(x)|+ |g(x)| < |M |2 + |g(x)|

|M |
2 < |g(x)|.

7. A naturally occurring idea is that a vector limit should be the same as an iterated
limit; e.g., lim(x,y)→(a,b) f(x, y) should be the same as what we would get by first letting
x approach a and then letting y approach b. Consider f(x, y) = xy

x2+y2 , which shows the
vector limit does not always behave this way.

1. Show limx→0(limy→0 f(x, y)) = 0.

2. Show limy→0(limx→0 f(x, y)) = 0.

3. Show lim(x,y)→(0,0) f(x, y) does not exist.

Solution: In the case that we want to take an iterative limit of a vector-valued function,
we can treat all the variables not under inspection as constants and focus solely on a
single variable.
a) If we first take the limit with respect to y and then take the limit with respect to x
we find

lim
x→0

(lim
y→0

( xy

x2 + y2 ))

lim
x→0

( 0
x2 ) = 0.

b) If we first take the limit with respect to x and the limit with respect to y we get

lim
y→0

(lim
x→0

( xy

x2 + y2 ))

lim
y→0

( 0
y2 ) = 0.
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c) Now if we attempt to find the limit of f as x and y approach (0, 0) simultaneously, we
are able to find different answers depending upon the route we take towards the origin.
Consider the limit as (x, y) approaches the origin along the line x = y.

lim
(x,y)→(0,0)

( xy

x2 + y2 ) = lim
(x,y)→(0,0)

( x
2

2x2 ) = 1
2

This is different from the limit we get if we approach the origin along the line x = −y.

lim
(x,y)→(0,0)

( xy

x2 + y2 ) = lim
(x,y)→(0,0)

(−x
2

2x2 ) = −1
2

The limit only exists in the case that it is independent of the route taken towards the
point of inspection; thus, the limit of f as (x, y) heads to (0, 0) does not exists.

10 For the real-valued function

f(x, y) =


x2y

x4+y2 (x, y) 6= (0, 0)
0 (x, y) = (0, 0)

show

1. the limit of f as h goes to 0 along the x or y axis is 0,

2. the limit of f as h goes to 0 along any straight line through the origin is also 0. [
Let h = (x,mx) ],

3. but the limit of f as h goes to 0 along the parabola y = x2 is 1
2 .

4. Explain why
lim

(x,y)→(0,0)
f(x, y)

does not exist.

Solution: a) To find the limit of the function as (x, y) approaches the origin along the x
or y axis we can fix one of the variables to be 0 and take the limit as the other variable
approaches 0. Inspecting along the y axis we have

lim
y→0

02y

04 + y2 = 0.

If y is fixed to be 0 and the limit is taken as (x, y) head to the origin along the x we get

lim
x→o

x20
x4 + y2 = 0.

b) If we substitute mx for y we get

lim
(x,y)→(0,0)

x2y

x4 + y2 = lim
(x,y)→(0,0)

x2(mx)
x2(x2 +m) = lim

(x,y)→(0,0)

mx

x2 +m
= 0.

c) Now if we wish to examine the limit as (x, y) approaches the origin along the parabola
y = x2 we need only substitute x2 for y to find

lim
(x,y)→(0,0)

x2y

x4 + y2 = lim
(x,y)→(0,0)

x4

2x4 = 1
2 .



3

d) The limit of f(x, y) as (x, y) approaches the origin is dependent on the path travelled;
thus, the limit does not exist.

15.Suppose f and g are real-valued functions of n variables which are differentiable at
all points of Rn. Show that

1. f + g and

2. af for any constant a

are differentiable on all of Rn.
Solution: 15. a) If f and g are both differentiable functions from Rn to R then there
exist 1 by n matrices mf , mg such that

lim
|h|→0

f(x0 + h)− f(x0)−mfh
|h|

+ lim
|h|→0

g(x0 + h)− g(x0)−mgh
|h|

= 0.

Theorem 4.1.1. part a says that the sum of these two limits is the limit of their sums.

lim
|h|→0

(f(x0 + h) + g(x0 + h))− (f(x0) + g(x0))− (mfh + mgh)
|h|

= 0

lim
|h|→0

(f + g)(x0 + h)− (f + g)(x0)− (mf + mg)h
|h|

= 0

If m is the the 1 by n matrix equal to the sum mf + mg, then this equality is precisely
the limit of the difference quotient which ensures differentiability of f + g at an arbitrary
point x0.

b) If f is a a differentiable function from Rn to R then there exists a 1 by n matrix
mf such that

lim
|h|→0

f(x0 + h)− f(x0)−mfh
|h|

= 0.

If both sides of this equality are multiplied by α they become

α · lim
|h|→0

f(x0 + h)− f(x0)−mfh
|h|

= 0.

As stated in Theorem 4.1.1. part c, the scalar multiple of the limit of a continuous
function is the limit of that function’s multiple.

lim
|h|→0

αf(x0 + h)− αf(x0)− αmfh
|h|

= 0

If αmf = m then this equality ensures that the limit of the difference quotient for αf(x0)
exists, and that αf is differentiable at an arbitrary point x0.

16.Show that the set L of all real-valued functions differentiable on Rn is a vector space.
Solution:To show that the set L forms a vector space we must show that it is closed under
scalar multiplication and element addition. That is, if f and g are real-valued functions
on Rn and α is a scalar, then f + g and αf are included in L.
i) For the function f + g to be differentiable, there must by a matrix m satisfying the
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limit of the difference quotient at any arbitrary point x. That is, there must be an m
such that

lim
h→0

(f + g)(x + h)− (f + g)(x)−mh
|h|

= 0.

Because (f + g)(x) = f(x) + g(x) we can expand the numerator on the left side to get

lim
h→0

(f)(x + h)− f(x) + g(x + h)− g(x)−mh
|h|

.

Now letting m be ∇f +∇g this limit becomes

lim
h→0

(f)(x + h)− f(x)−∇fh
|h|

+ lim
h→0

(g)(x + h)− g(x)−∇gh
|h|

.

By the differentiability of f and g, the sum of these limits exists and is equal to 0. Thus,
f + g is differentiable and included in the set L.
ii) For the function αf to be included in the set L, it too must be differentiable. Because
f is differentiable, we know there exists a matrix m such that

lim
h→0

(f)(x + h)− f(x)−mh
|h|

= 0.

If we multiply both sides of this equality we have

lim
h→0

αf(x + h)− αf(x)− αmh
|h|

= 0.

Notice that this limit being equal to 0 is a sufficient condition for proving that the func-
tion αf is differentiable at an arbitrary point x with gradient ∇(αf) = α∇f .


