MATH 223

Some Notes on Assignment 6 Chapter 3: 10, 17 abc, 19ac, 20 and 22.

10: Sketch and discuss the level curves $\frac{x^2}{4} + \frac{y^2}{9} = k$ for $k = 9, 5, 1, 0, -1$ *Solution:* At each level, *k*, the set of all points for which $f(x, y) = k$ is an ellipse centered at the origin. When $k = 0$ the level set is the origin, and when $k = -1$ the level set is empty.

17abc:Find f_x and f_y or each of the following:

a: $f(x, y) = \sin xy$

Solution: To take the partial derivative with respect to *x* we can treat *y* as a constant and the derivative becomes a simple application of the Chain Rule: $f_x(x, y) = y \cos xy, f_y(x, y) = x \cos xy$

b: $f(x, y) = \tan e^x$ *Solution:* Recall from single variable calculus that the derivative of $\tan x$ is $\sec^2 x$ and the derivative of e^x is e^x . If we hold *y* constant and take the derivative with respect to x , the Chain Rule gives $f_x x, y) = \frac{e^x}{\cos^2 x}$ $\frac{e^x}{(\cos^2 e^x)}$ As there is no *y* included in $f(x, y)$, the entire expression is a constant if *x* is treated as a constant. The derivative $f_y x, y$ is then 0.

c: $f(x,y) = \frac{\arctan y}{x}$ *Solution:* If we treat *y* as a constant then the term arctan y is a constant. Then the partial derivative with respect to x is $(\arctan y)(-x^{-2})$. From single variable calculus we know that the derivative of arctan *x* is $\frac{1}{1+x^2}$. The partial derivative of $f(x, y)$ with respect to y is then $\left(\frac{1}{x}\right)$ $(\frac{1}{x})\frac{1}{1+1}$ $\frac{1}{1+y^2}$.

19ac For each of these functions *f*, determine $f_x(2,3)$ and $f_y(2,3)$:

a: $f(x, y) = x^3 + 4xy - y^2$ *Solution:* If $f(x, y) = x^3 + 4xy - y^2$ then we have

$$
f_x(x, y) = 3x^2 + 4y \rightarrow f_x(2, 3) = 24
$$
 and

$$
f_y(x, y) = 4x - 2y \to f_y(2, 3) = 2
$$

c $f(x,y) = \frac{2x-3y}{3x+2y}$ *Solution:* Because $f(x,y) = \frac{2x-3y}{3x+2y}$ contains an *x* term and *y* term in both the numerator and the denominator, we will need to apply The Quotient Rule to find both partial derivatives.

$$
f_x(x,y) = \frac{13y}{(3x+2y)^2} \to f_x(2,3) = \frac{13}{48} \text{ and}
$$

$$
f_y(x,y) = \frac{-13x}{(3x+2y)^2} \to f_y(2,3) = \frac{-13}{72}
$$

20: Josh's utility function for two particular goods has the form $U(x, y) =$ $(x+3)^2(y+2)^3$. Find the marginal utility functions U_x and U_y and evaluate them if $x = 4, y = 4$.

Solution: If the utility of goods *x* and *y* is $U(x, y) = (x + 3)^2(y + 2)^3$ then the marginal utility of good *x* is $U_x(x, y) = (y+2)^3 2(x+3)$ and the marginal utility of good *x* at (4, 4) is 3024. The marginal utility of good *y* is $u_y(x, y) =$ $(x+3)^23(y+2)^2$; evaluated at $(4,4)$ we have $U_y(4,4) = 5292$.

22: A thin, homogeneous metal rod lying along the horizontal axis from 0 to *L* has a nonuniform temperature. Heat (thermal energy) transfers from regions of higher temperature to regions of lower temperature. Under certain conditions the function $u(x, t)$ which gives the temperature at position x and time *t* obeys the **diffusion equation** $u_{xx} = 4u_t$. Show that function

$$
u(x,t) = \frac{e^{-x^2/t}}{\sqrt{x}}, t > 0
$$

satisfies the diffusion equation.

Solution: To see whether or not the function $u(x, t)$ satisfies the diffusion equation we need to find the second order partial derivative u_{xx} and the first order partial derivative u_t . If we factor out $\frac{1}{\sqrt{2}}$ \overline{t} and differentiate with respect to *x* using the Product Rule we find

$$
u_x(x,t) = \frac{-2xe^{\frac{-x^2}{t}}}{t^{\frac{3}{2}}}.
$$

Now we can factor out $\frac{1}{t^{\frac{3}{2}}}$ and use the Product Rule to find

$$
u_{xx}(x,t) = e^{\frac{-x^2}{t}} \left(\frac{4x^2}{t^{\frac{5}{2}}} - \frac{2}{t^{\frac{3}{2}}}\right).
$$

Now we need to use the Quotient Rule on $u(x, t)$ to find $u_t(x, t)$.

$$
u_t(x,t) = e^{\frac{-x^2}{t}} \left(\frac{x^2}{t^{\frac{5}{2}}} - \frac{1}{2t^{\frac{3}{2}}}\right) = 4u_{xx}(x,t).
$$

The equation does satisfy the diffusion equation.