MATH 223

Some Notes on Assignment 4 Chapter 2: Exercises 35, 40, 42, 43 and Problem A

35: For a parametrized curve $\mathbf{x}(t)$, $a \le t \le b$, the **arc length L** is the integral of its speed:

$$
\mathbf{L} = \int_{a}^{b} |\mathbf{v}(t)| dt = \int_{a}^{b} |\mathbf{x}'(t)| dt
$$

(a): If the speed is constant, show that arc length is given by the classic $distance = rate \times time formula.$

Solution: If speed is constant, then $|\mathbf{x}'(t)| = r$ for some constant *r* in which case $\mathbf{L} = \int_a^b r \, dt = r(b - a) = \text{rate} \times \text{time}.$

(b): Show that the curve with parametrization $\mathbf{g}(t) = (a \sin \omega t, a \cos \omega t)$ with *a >* 0 traces out, in a clockwise direction a portion of the circle of radius *a* centered at the origin with speed $a\omega$. We call the constant ω the **angular speed** .

Solution: $|\mathbf{g}(t)| = \sqrt{a^2 \sin^2 \omega t + a^2 \cos^2 \omega t} = \sqrt{a^2} = a$ so $\mathbf{g}(t)$ lies on the circle of radius *a* centered at the origin for all *t*. At $t = 0$, we are at the point $(0, a)$; as *t* increases from 0, $a \sin \omega t$ will increase and $a \cos \omega t$ will decrease so we move in a clockwise direction. We trace out the entire circle as *t* goes from 0 to 2π . √

Now speed = $|\mathbf{g}'(t)| = |(a\omega \cos \omega t, -a\omega \sin \omega t|$ = $\Delta N_{\text{ow speed}} = |\mathbf{g}'(t)| = |(a\omega \cos \omega t, -a\omega \sin \omega t| = \sqrt{a^2 \omega^2 \cos^2 \omega t + a^2 \omega^2 \sin^2 \omega t} =$ $a^2\omega^2 = a\omega$.

(c) Describe the difference in motion between the parametrizations $\mathbf{x}(t)$ = $(\sin t, \cos t), 0 \le t \le 2\pi \text{ and } \mathbf{y}(u) = (\sin u, \cos u), 0 \le u \le 6\pi.$

Solution: Both trace out the unit circle in the same direction and with the same speed but **y** traces out the circle 3 times while **x** only traces it out once.

40: For the position function $p(t) = (\cos t, \sin t)$ with velocity **v** and acceleration **a**, what is the geometric relationship between **p** and **v**? Between **p** and **a**? Between **v** and **a**? *Solution:* $\mathbf{v} = (-\sin t, \cos t)$ and $\mathbf{a} =$ $(-\cos t, -\sin t) = -\mathbf{p}$ so **p** and **v** are orthogonal to each other and **a** points in the opposite direction of **p** so **a** and **v** are also orthogonal.

42: Find all differentiable vector valued functions **p** such that $\mathbf{p}'(t) =$ $(te^t, \cos t, 2t\sqrt{1+t^2})$ and $\mathbf{p}(0) = (0, 0, 0)$

Solution: If $\mathbf{p}'(t) = (te^t, \cos t, 2t\sqrt{1+t^2})$ then $\mathbf{p}(t)$ have the form $\mathbf{p}(t) =$ $((t-1)e^{t} + C_1, \sin t + C_2, \frac{2}{3})$ $\frac{2}{3}(1+t^2)^{\frac{3}{2}} + C_3$ where C_1 , C_2 , and C_3 are all real constants. Given that we know $p(0) = (0,0,0)$ we can solve for the undetermined constants.

$$
(0 - 1)e^{t} + C_{1} = 0 \Rightarrow C_{1} = 1
$$

$$
\sin 0 + C_{2} = 0 \Rightarrow C_{2} = 0
$$

$$
\frac{2}{3}(1 + t^{2})^{\frac{3}{2}} + C_{3} = 0 \Rightarrow C_{3} = -\frac{2}{3}
$$

Hence $P(t) = ((t - 1)e^{t} + 1, \sin t, \frac{2}{3}(1 + t^2)^{\frac{2}{3}} - \frac{2}{3})$ $\frac{2}{3}$. √

42: If ${\bf p}'(t) = (te^t, \cos t, 2t)$ $(1+t^2)$ then $\mathbf{p}(t)$ have the form $\mathbf{p}(t) = ((t-1)e^t +$ C_1 , $\sin t + C_2$, $\frac{2}{3}$ $\frac{2}{3}(1+t^2)^{\frac{3}{2}} + C_3$) where C_1 , C_2 , and C_3 are all real constants. [Use integration by parts on the first component with $u = te^t, dv = dt$, and substitution $u = 1 + t^2$ for the third component.

Given that we know $\mathbf{p}(0) = (0,0,0)$ we can solve for the undetermined constants.

$$
(0 - 1)e^{t} + C_{1} = 0 \Rightarrow c_{1} = 1
$$

\n
$$
\sin 0 + C_{2} = 0 \Rightarrow c_{2} = 0
$$

\n
$$
\frac{2}{3}(1 + t^{2})^{\frac{3}{2}} + C_{3} = 0 \Rightarrow c_{3} = -\frac{2}{3}
$$

Hence $\mathbf{P}(t) = \left((t-1)e^{t} + 1, \sin t, \frac{2}{3}(1+t^2)^{\frac{2}{3}} - \frac{2}{3} \right)$ 3 *.*

43: Determine $\int \mathbf{p}(t)dt$ for each of the following vector-valued functions:

- 1. $\mathbf{p}(t) = (4t^3, 3t^2, 2t, 1, 0)$. *Solution:* $(t^4, t^3, t, 0) + (C1, C2, C3, C4)$
- 2. $\mathbf{p}(t) = (t^2, 1 + 7t, 2/t)$. *Solution:* $\left(\frac{t^3}{3}\right)$ $\frac{t^3}{3}, t + 7\frac{t^2}{2}$ $\left(\frac{t^2}{2}, 2\ln|t|\right) + (C1, C2, C3)$
- 3. $\mathbf{p}(t) = (e^t, \tan t, \ln t)$. *Solution:* $(e^t, -\ln \cos t, t \ln t t) + (C_1, C_2, C_3)$

Problem A: Let $f(t) = (a \cos t, a \sin t, bt)$ with *a* and *b* nonzero constants. Sketch the graph of this curve (a **helix**) for $0 \le t \le 5\pi$. Show that the speed is constant and the velocity vector is always orthogonal to the vector $\mathbf{r}(t) = (a \cos t, a \sin t, 0).$

 $Solution:$ The velocity vector is $\mathbf{v} = (-a \sin t, a \cos t, b)$ so speed = $|\mathbf{v}| =$ $a^2 \sin^2 t + a^2 \cos^2 t + b^2 = \sqrt{a^2 + b^2}$ and $\mathbf{v} \cdot \mathbf{r} = -a^2 \cos t \sin t + a^2 \cos t \sin t + 0t = 0.$

The Helix with $a = 3$ and $b = 2$.