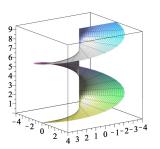
## MATH 223: Multivariable Calculus



Class 9: September 30, 2022



- ► Notes on Assignment 8
- ► Assignment 9

# **Announcements**

Exam 1: Next Monday, 7 PM - No Time Limit

No Books, Notes, Computers, etc.

Focus on Chapters 2 and 3 No

Class Next Wednesday
Make Up Class Thursday
Evening



Tangent Planes To Surfaces

(I) 
$$f: \mathbb{R}^2 \to \mathbb{R}^1$$
, a a point in  $\mathbb{R}^2$ 

Tangent plane to graph of f at  $(\mathbf{a}, f(\mathbf{a}))$ :

$$T(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$
(II):  $f : \mathcal{R}^2 \to \mathcal{R}^3$ 

$$\sigma(s,t)=(f(s,t),g(s,t),h(s,t))$$

$$\sigma_s(s,t) = (f_s, g_s, h_s)$$
 and.  $\sigma_t(s,t) = (f_t, g_t, h_t)$   
Tangent Plane at  $\sigma(\mathbf{a})$ :

$$\sigma(\mathbf{a}) + (s,t) \begin{pmatrix} f_s(\mathbf{a}) & g_s(\mathbf{a}) & h_s(\mathbf{a}) \\ f_t(\mathbf{a}) & g_t(\mathbf{a}) & h_t(\mathbf{a}) \end{pmatrix}$$

Note: 
$$1 \times 3 + (1 \times 2)(2 \times 3)$$

Writing vectors vertically: 
$$\sigma = \begin{pmatrix} f \\ g \\ h \end{pmatrix}, \sigma' = \begin{pmatrix} f' \\ g' \\ h' \end{pmatrix}$$

Tangent Plane: 
$$T \binom{s}{t} = \sigma(\mathbf{a}) + \sigma'(\mathbf{a}) \binom{s}{t}$$

Example: 
$$f(x, y, z) = \frac{x^2y}{z}$$

Note:  $f: \mathcal{R}^3 \to \mathcal{R}^1$  so GRAPH lives in  $\mathcal{R}^4$ .

Find Equation of Tangent Hyperplane at  $\mathbf{a} = (-3, 4, 2)$ 

$$f_{x}(x, y, z) = \frac{2xy}{z}$$

$$f_{y}(x, y, z) = \frac{x^{2}}{z} so\nabla f(x, y, z) = \left(\frac{2xy}{z}, \frac{x^{2}}{z}, -\frac{x^{y}}{z^{2}}\right)$$

$$f_{z}(x, y, z) = -\frac{x^{y}}{z^{2}}$$

$$f_{z}(x, y, z) = f(x) = \frac{(-3)^{2} \times 4}{z} = 10$$

at 
$$\mathbf{a} = (-3, 4, 2) : f(\mathbf{a}) = \frac{(-3)^2 \times 4}{2} = 18$$

$$\nabla f(\mathbf{a}) = \left(\frac{(2)(-3)(4)}{2}, \frac{(-3)^2}{2}, \frac{-(-3)^2(4)}{2}\right) = \left(-12, \frac{9}{2}, -9\right)$$

Equation of Tangent Hyperplane is

$$w = 18 + \left(-12, \frac{9}{2}, -9\right) \cdot (x+3, y-4, z-2)$$

#### Parametrized Surfaces



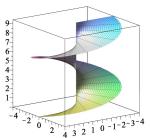
 $\begin{array}{ll} \text{Function from } \mathcal{R}^2 \to \mathcal{R}^3 \\ \text{Domain} & \text{Patch in Plane} \\ \text{Image} & \text{Surface in Space} \\ \text{Graph} & \text{Lives in } \mathcal{R}^5 \\ \end{array}$ 

Need for Parametrizations: Graph of  $f:\mathcal{R}^1 \to \mathcal{R}^1$  is a curve but not every curve is the graph of such a function Similarly, graph of  $f:\mathcal{R}^2 \to \mathcal{R}^1$  is a surface but not every surface is the graph of such a function.

Example: 
$$\sigma(s,t) = (s\cos t, s\sin t, t), 0 \le s \le 4, 0 \le t \le 3\pi$$

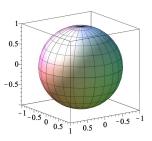


Point: 
$$(1, \pi/4)$$
 so  $\sigma(1, \pi/4) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\pi}{4}\right)$   $\sigma_s(s,t) = (\cos t, \sin t, 0)$  and  $\sigma_t(s,t) = (-s\sin t, s\cos t, 1)$  At  $\left(1, \frac{\pi}{4}\right)$ , representation of the tangent plane is 
$$\sigma\left(1, \frac{\pi}{4}\right) + \sigma_s\left(1, \frac{\pi}{4}\right)s + \sigma_t\left(1, \frac{\pi}{4}\right)t$$



### Parametrize Unit Sphere

 $\sigma(s,t) = (\cos t \cos s, \sin t \cos s, \sin s), 0 \le s \le 2\pi, 0 \le t \le 2\pi$ 



$$x = \cos t \cos s, y = \sin t \cos s, z = \sin s$$

$$x^2 + y^2 + z^2 = \cos^2 t \cos^2 s + \sin^2 t \cos^2 s + \sin^2 s$$

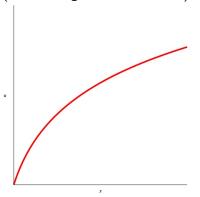
$$= \cos^2 s (\cos^2 t + \sin^2 t) + \sin^2 s$$

$$= \cos^2 s + \sin^2 s = 1$$

# Utility

Utility = happiness, satisfaction, pleasure, usefulness  $u(x), x \ge 0$ 

Typical Assumptions: *u* is increasing, concave down function ("decreasing returns to scale")



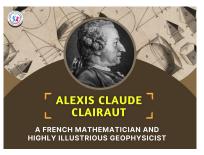
Example:  $u(x) = x^{1/3}$  so  $u'(x) = \frac{1}{3x^{2/3}}, u''(x) = -\frac{2}{9}x^{-5/3}$ 

Example: 2 Goods with  $u(x,y) = \sqrt[3]{xy}$ Each unit of x costs \$35 and each unit of y costs \$80 We have \$D to spend: Budget Constraint: 35x + 80y = DGoal: Maximize Utility:

$$80y = D - 35x \text{ so } y = \frac{D - 35x}{80}$$
$$u(x, y) = f(x) = \sqrt[3]{\frac{x(D - 35x)}{80}}$$

f is maximized when  $\frac{x(D-35x)}{80}$  is maximized.  $G(x)=x(D-35x).=Dx-35x^2.$  has G'(x)=D-70x and G''(xx)=-70 Hence there is a maximum when x=D/70 Then  $y=\frac{D-35(D/70)}{80}=D/160$ 

Clairaut's Theorem on Equality of Mixed Partials If  $f_{xy}$  and  $f_{yx}$  are continuous at **a**, then  $f_{xy}(\mathbf{a}) = f_{yx}(\mathbf{a})$ 



May 7, 1713 - May 17, 1765

Clairaut's Theorem on Equality of Mixed Partials If  $f_{xy}$  and  $f_{yx}$  are continuous at **a**, then  $f_xy(\mathbf{a}) = f_yx(\mathbf{a})$ 

$$f(x,y) = \begin{cases} 2xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

It Turns. Out That

$$f_{xy}(0,0) = -2$$
  
 $f_{yy}(0,0) = +2$ 

Mixed Partials Are Not Equal