MATH 223: Multivariable Calculus

MULTIPLE INTEGRALS

Stoke's Theorem

KORK EXTERNE PROVIDE

Class 36: December 12, 2022

Notes on Assignment 33 History of Stokes's Theorem

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Announcements

\blacktriangleright Course Response Forms Today

▶ Link: [https://crfaccess.middlebury.edu/student/o](https://crfaccess.middlebury.edu/student/)r go/crf

KORK ERKER ADAM ADA

▶ Available During Class Time Today

\blacktriangleright Final Examination

One Sheet of Notes

Today: 12:15 to 1:45 PM Tomorrow: 12:45 to 2:30

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Final Exam

Wednesday: 9 AM - Noon

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Stokes's Theorem

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Vector Field Theorems Plane $\mathbf{F}:\mathcal{R}^2\to\mathcal{R}^2$

KORK ERKER ADAM ADA

Positive Orientation

Setting: Let D be a plane region bounded by a curve traced out in a counterclockwise direction by some parametrization $h:\mathcal{R}^1\to\mathcal{R}^2$ for $a\leq t\leq b.$

Let $S=g(D)$ be the image of D where $g:\mathcal{R}^2\rightarrow \mathcal{R}^3$ so that S is a 2-dimensional surface in 3-space whose border γ corresponds to the boundary of D.

We say that γ inherits the **positive orientation** with respect to S. The composition $q(h(t))$ describes the border of S. Denote by ∂S the **positively oriented border** of S .

KORKAR KERKER SAGA

Vector Field in $\mathcal{R}^3\colon\mathbf{F}(\mathbf{x})=(F(\mathbf{x}),G(\mathbf{x}),H(\mathbf{x})))$ where each of F, G, H is a real-valued function of 3 variables.

$$
\mathbf{Curl}\ \mathbf{F}(\mathbf{x}) = (H_y(\mathbf{x}) - G_z(\mathbf{x}), F_z(\mathbf{x}) - H_x(\mathbf{x}), G_x(\mathbf{x}) - F_y(\mathbf{x}))
$$

Stokes's Theorem: Let S be a piece of smooth surface in \mathbb{R}^3 , parametrized by a twice continuously differentiable function q . Assume that D, the parameter domain of q, is a finite union of simple regions bounded by a piecewise smooth curve. If \bf{F} is a continuously differentiable vector field defined on S , then

$$
\int_S \mathsf{Curl}\ \mathbf{F}\cdot dS = \int_{\partial S} F\cdot d\mathbf{x}
$$

where ∂S is the positively oriented border of S.

[Note: If $\mathbf{F} = (F, G, 0)$ where F and F are independent of z, then Stokes's Theorem reduces to Green's Theorem. Thus Stokes generalizes Green.]KELK KØLK VELKEN EL 1990

È 290 → 重→

Example: Verify Stokes Theorem where
\n
$$
\mathbf{F}(x, y, z) = (z, x, y)
$$
\n
$$
S: g(u, v) = (u, v, 1 - u^2 - v^2), u^2 + v^2 \le 1.
$$
\nParametrize ∂S by $(\cos t, \sin t), 0 \le t \le 2\pi$.

\nThen $g(u, v) = (\cos t, \sin t, 0)$ and $g'(u, v) = (-\sin t, \cos t, 0)$

\n
$$
\mathbf{F}(g(u, v)) = (1 - u^2 - v^2, u, v) = (0, \cos t, \sin t)
$$

$$
\mathbf{F}\left(g(u,v)\right) \cdot g'(u,v) = (0, \cos t, \sin t) \cdot (-\sin t, \cos t, 0) = \cos^2 t
$$

$$
\int_{\partial S} \mathbf{F} = \int_0^{2\pi} \cos^2 t \, dt = \int_0^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \frac{1}{2} \left[t + \frac{\sin 2t}{2} \right]_0^{2\pi} = \pi
$$

Kロトメ部トメミトメミト ミニのQC

Now \int_S curl $\mathbf{F} = \int_S$ curl (z, x, y)

$$
\text{curl } \mathbf{F} = det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z & x & y \end{pmatrix} = (1 - 0, -(0 - 1), 1 - 0) = (1, 1, 1)
$$

Thus we want to integrate (1,1,1) over *S*.
Here
$$
g(u, v) = (u, v, 1 - u^2 - v^2)
$$

so $g_u = (1, 0, -2u), g_v = (0, 1, -2v)$
and $g_u \times g_v = (2u, 2v, 1)$ [work it out]

$$
\int_{S} \text{ curl } \mathbf{F} = \iint_{D} (1,1,1) \cdot (2u,2v,1) \, du \, dv = \iint_{D} 2u + 2v + 1 \, du \, dv
$$

which equals (using polar coordinates)

$$
\int_{r=0}^{r=1} \int_{\theta=0}^{\theta=2\pi} (2r\cos\theta + 2r\sin\theta + 1) \, r \, dr \, d\theta
$$

$$
\int_{S} \text{ curl } \mathbf{F} = \iint_{D} (1,1,1) \cdot (2u, 2v, 1) \, du \, dv = \iint_{D} 2u + 2v + 1 \, du \, dv
$$

which equals (using polar coordinates)

$$
\int_{r=0}^{r=1} \int_{\theta=0}^{\theta=2\pi} (2r\cos\theta + 2r\sin\theta + 1) r dr d\theta
$$

$$
= \int_{r=0}^{r=1} \left[2r^2 \sin \theta - 2r^2 \cos \theta + r\theta \right]_{\theta=0}^{\theta=2\pi} dr
$$

$$
= \int_{r=0}^{r=1} 2\pi r \, dr = 2\pi \left[\frac{r^2}{2} \right]_{r=0}^{r=1} = \pi
$$

KE K K Ø K K E K K E K V R K K K K K K K K

Interpretation of Curl

(1) The direction of curl $F(x)$ is the axis about which F rotates most rapidly at x. The length of curl $F(x)$ i is the maximum rate of rotation at x.

(2) **Maxwell's Equations**: curl $B = I$ where I is the vector current flow in an electrical conductor and B is the magnetic field which the current flow induces in the surrounding space.

Stokes's Theorem then yields **Ampere's Law**:

$$
\int_{S} \mathbf{I} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{B} \cdot d\mathbf{x},
$$

the total current flux across S is the circulation of the magnetic field around the border curve ∂S that encircles the conductor.

Definitions: A vector field **F** is **divergent-free** if div $\mathbf{F} = 0$ and **F** is curl-free if curl $\mathbf{F} = \mathbf{0}$ $\mathbf{F} = \mathbf{0}$ $\mathbf{F} = \mathbf{0}$.

Today:

Consequences of Stokes's Theorem

$$
\int_{S} \text{curl } \mathbf{F} = \int_{\partial S} \mathbf{F}
$$

S is a Surface in \mathbb{R}^{3}

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

George Gabriel Stokes August 13, 1819 – February 1, 1903 [Stokes Biography](https://mathshistory.st-andrews.ac.uk/Biographies/Stokes/)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

 2990

James Clerk Maxwell (June 13, 1831 – November 5, 1879) [Maxwell Biography](https://mathshistory.st-andrews.ac.uk/Biographies/Maxwell/)

KO K K Ø K K E K K E K V K K K K K K K K K

Theorem: A continuously differentiable gradient field has a symmetric Jacobian matrix.

Proof: If F is a gradient field, then $\mathbf{F} = \nabla f$ for some real-valued function f.

Then $\mathbf{F} = (f_x, f_y)$ so the Jacobian matrix is

$$
J = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}
$$

By Continuity of Mixed Partials, $f_{xy} = f_{yx}$ so J is symmetric. \Box

KOD KAD KED KED E VOOR

Theorem: Let F be a continuously differentiable vector field defined on an open set B in \mathcal{R}^2 or $\mathcal{R}^3.$ If B is simply connected and curl F is identically zero in B, then F is a gradient field in B : that is, there is a real-valued function f such that $\mathbf{F} = \nabla f$

Proof: Let γ be a piecewise smooth closed loop in B. Because B is simply connected, there is a piecewise smooth surface S of which γ is the boundary. By Stokes' Theorem

$$
\int_{\gamma} \mathbf{F} = \int_{S} \text{ curl } \mathbf{F} = \int_{S} \mathbf{0} = 0.
$$

KORKAR KERKER SAGA

Thus F is path-independent and hence conservative.

Theorem: Let F be a continuously differentiable vector field defined on an open set B in \mathcal{R}^2 or $\mathcal{R}^3.$ If B is simply connected and curl F is identically zero in B, then F is a gradient field in B; that is, there is a real-valued function f such that $\mathbf{F} = \nabla f$

Theorem: If the Jacobian matrix of a continuously differentiable vector field on a simply connected set is symmetric, then the vector field is conservative. Proof: Suppose F is a vector field in \mathcal{R}^3 with $\mathbf{F}(\mathbf{x}) = (F(\mathbf{x}), G(\mathbf{x}), H(\mathbf{x}))$ where $\mathbf{x} = (x, y, z)$ $Jacobian =$ $\sqrt{ }$ \mathcal{L} F_x F_y F_z G_x G_y G_z H_x H_y H_z \setminus with $F_y = G_x$ $F_z = H_x$ $G_z=H_y$ curl $\mathbf{F} = (H_y - G_z, H_x - F_z, G_x - F_y) = (0, 0, 0) = \mathbf{0}$

KORKAR KERKER SAGA

What We Might Do If We Had A Few More Days

- \blacktriangleright Vector Field Theory Applications
	- \blacktriangleright Physics, Chemistry, Biology, Oceanography, Meteorology, \ldots .

KORKAR KERKER SAGA

- ▶ [Stokes's Theorem, Data, and the Polar Ice Caps](https://www.tandfonline.com/doi/full/10.1080/00029890.2018.1506670)
- \blacktriangleright Economics
- \triangleright Generalizations To Higher Dimensions and Manifolds
	- \blacktriangleright Wedge Products, Tensors, Differential Forms
	- In James Munkres, Analysis on Manifolds
- ▶ Newton's Derivation of Kepler's Laws

重

 299

We hope everyones has a wonderful holiday season and a happy new year!

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \pm

 Ω

メロトメ 倒 トメ きトメ きトー

重

 299

Course Response Forms

Link: <https://crfaccess.middlebury.edu/student/> or go/crf

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →