
MATH 223: Multivariable Calculus

Class 35: December 9, 2022



Notes on Assignment 32
Assignment 33
Stokes Theorem



Announcements
Independent Project Due Tomorrow/Monday

Course Response Forms
In Class Next Monday

Bring Laptop/SmartPhone

Final Exam
Wednesday, December 14: 9 AM – Noon



Integrating Vector Fields Over Surfaces

g(u, v) = [u, v,−2u2 − 3v2] g(u, v) = [u cos v, u sin v, v]



Integrating Vector Fields Over Surfaces

g(u, v) = [u cos v, u sin v, v]



Smooth Curve γ Smooth Surface S

g : I in R1 → Rn g : D in R2 → R3

Length =
∫
I |g
′(t)| dt Area σ(S) =

∫∫
D |gu × gv|dudv

Mass =
∫
I µ(g(t))|g′(t)| dt Mass =

∫∫
D µ dσ

Line Integral Surface Integral∫
γ F =

∫
I F(g(t)) · g′(t) dt

∫∫
S F =

∫∫
D F(g(u, v)) · (gu × gv)∫∫

S F =
∫∫
S F · dS =

∫∫
S F ·N dσ

Φ(F, S) =
∫∫
S F is flux of F across S.



Surface Integral
Let g be a function from an interval [t0, t1] into Rn with image γ

and µ density at g(t).
Then Mass of Wire =

∫ t1
t0
µ(t)|g′(t)| dt

If µ ≡ 1, then mass = length of curve
∫ t1
t0
|g′(t)| dt

Generalize To Surfaces
Let D be region in plane and g : D → R3 with

g(u, v) = (g1, g2, g3) where each component function gi is
continuously differentiable.

There are two natural tangent vectors: gu = ∂g
∂u and gv = ∂g

∂v ,
These determine a tangent plane.

S is a Smooth Surface if these two vectors are linearly
independent.

Note that ∂g
∂u ×

∂g
∂v is normal to the plane with

| ∂g∂u ×
∂g
∂v | = |

∂g
∂u ||

∂g
∂v | sin θ

= Area of Parallelogram Spanned by the Vectors



sin θ = h
|b| so h = |b| sin θ

Area of Parallelogram = (Base)(Height) = |a||b| sin θ
a = gu,b = gv

|gu × gv| = |gu||gv| sin θ



Surface Area

σ(S) =
∫∫
D |

∂g
∂u ×

∂g
∂v | dudv =

∫∫
D |gu × gv| dudv

If µ(g(u, v)) is density, then mass =∫∫
D µ dσ =

∫∫
D µ(g(u, v))|gu × gv| dudv

Plotting Parametrized Surface in Maple:
plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π
gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣
=

(∣∣∣∣ sin v 0
u cos v 1

∣∣∣∣ ,− ∣∣∣∣ cos v 0
−u sin v 1

∣∣∣∣ , ∣∣∣∣ cos v sin v
−u sin v u cos v

∣∣∣∣)
= (sin v,− cos v, u)

Then |gu × gv| =
√

sin2 v + cos2 v + u2 =
√

1 + u2

Area =
∫ v=3π
v=0

∫ 1
u=0

√
1 + u2 du dv

If density is µ(x) = u, then Mass =∫ v=3π
v=0

∫ u=1
u=0 u(1 + u2)1/2 du dv =

∫ v=3π
v=0

[
1
3(1 + u2)3/2

]1
0
dv

=
∫ v=3π
v=0

1
3 [23/2 − 13/2] dv = 3π 1

3 [23/2 − 1] = π[23/2 − 1]



Integrating A Vector Field Over the Spiral Ramp



Integrating A Vector Field Over the Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π
gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = (sin v,− cos v, u)
Suppose our vector field is F(x, y, z) = (x2, 0, z2)

So F (g(u, v)) = (u2 cos2 v, 0, v2)
The set D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π}

We want
∫
D F (g(u, v)) · (gu × gv)

which equals
∫ 3π
v=0

∫ 1
u=0

[
u2 cos2 v sin v + uv2

]
du dv

=
∫ 3π
v=0

[
u3

3 cos2 v sin v + u2

2 v
2
∣∣1
u=0

]
dv =∫ 3π

v=0

[
1
3 cos2 v sin v + 1

2v
2
]
dv

=
[
− cos3 v

9 + v3

6

]3π
v=0

= 1
9 + 33Pi3

6 − −19 = 2
9 + 9

2π
3



Gauss’s Theorem aka Divergence Theorem
Planar Version:

∫
D div F =

∫
γ F · N

Three Dimensional Version
∂R is 2-dimensional surface surrounding 3-dimensional region R∫

R div F =
∫
∂R F ·N



Gauss’s Theorem

The Setting

R Bounded Solid Region in R3

∂R Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R

F Continuously Differentiable Vector Field in R

The Theorem

In this setting

∫
R

div F dV =

∫
∂R

F · dS



Example Verify Gauss’s Theorem where R is solid cylinder of
radius a and height b with the z-axis as the axis of the cylinder and

F = (x, y, z)

∫
S

F · dS =

∫
Bottom

F · dS +

∫
Top

F · dS +

∫
Side

F · dS



Cylinder of Radius a and height b

∫
S F · dS =

∫
Bottom F · dS +

∫
Top F · dS +

∫
Side F · dS

For
∫
Bottom F · dS, unit normal is (0,0,-1)

Then (x, y, z) · (0, 0,−1) = −z but z = 0 so
∫
Bottom F · dS = 0

For
∫
Top F · dS, unit normal is (0,0,1)

Then (x, y, z) · (0, 0,+1) = z but z = b so
∫
Top F · dS

is b× area of top = bπa2



Finally,
∫
Side F · dS

Vector Field F = (x, y, z)
Surface: x2 + y2 = a2, 0 ≤ z ≤ b

g(u, v) = (a cosu, a sinu, v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ b



Finally,
∫
Side F · dS

g(u, v) = (a cosu, a sinu, v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ b
gu = (−a sinu, a cosu, 0), gv = (0, 0, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

−a sinu a cosu 0
0 0 1

∣∣∣∣∣∣
=(expanding along bottom row) (a cosu, a sinu, 0)

Thus |gu × gv| =
√
a2 cos2 u+ a2 sin2 u+ 02 = a

Also F (g(u, v)) = (a cosu, a sinu, v) so F (g(u, v)) · (gu × gv) =
a2 cos2 u+ a2 sin2 u+ 0 = a2.

so
∫
Side F · dS =

∫ b
v=0

∫ 2π
u=0 a

2 du dv = 2πa2b
Putting it altogether:

∫
S F · dS

=
∫
Bottom F · dS +

∫
Top F · dS +

∫
Side F · dS = 0 + πa2b+ 2πa2b =

3πa2b



On The Other Hand, we compute
∫
R div F

F = (x, y, z)
div F = 1 + 1 + 1 = 3

The solid R is more easily described in polar coordinates
0 ≤ θ ≤ 2π 0 ≤ r ≤ a 0 ≤ z ≤ b.

∫
R

div F =

∫ 2π

θ=0

∫ b

z=0

∫ a

r=0
div Frdrdzdθ =

∫ 2π

θ=0

∫ b

z=0

∫ a

r=0
3rdrdzdθ

∫ 2π

θ=0

∫ b

z=0
3
r2

2
|ar=0dzdθ =

∫ 2π

θ=0

∫ b

z=0

3

2
a2dzdθ =

∫ 2π

θ=0

3

2
a2bdθ = 2π

3

2
a2b

= 3a2bπ



Example: F = (ey cos z,
√
x3 + 1 sin z, x2 + y2 + 3)

div F = 0 + 0 + 0 = 0
so
∫
R div F = 0 for any region in R3.

Let S be graph of z = (1− x2 − y2)e1−x2−3y2) for z ≥ 0
oriented by outward pointing unit normal vector.

Finding
∫
S F · dσ directly is impossible.



A Clever Way To Find
∫
S F · dσ indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S ∪ S′ where S′ is the disk of radius 1
(x2 + y2 = 1) in z = 0 plane.

Then
∫
∂r F =

∫
S∪S′ F =

∫
S F +

∫
S′ F

But by Gauss’s Theorem, this integral equals 0.
Hence

∫
S F = −

∫
S′ F

Now∫
S′ F = −

∫
(−−,−−, x2 +y2 + 3) · (0, 0,−1) =

∫
x2 +y2 + 3dxdy

=
∫ 2π
θ=0

∫ 1
r=0(r

2 + 3) r dt dθ = 7
2π



Next Time:

Stokes’s Theorem∫
S

curl F =

∫
∂S

F

S is a Surface in R3



Theorem: A continuously differentiable gradient field has a
symmetric Jacobian matrix.

Proof: If F is a gradient field, then F = ∇f for some real-valued
function f .

Then F = (fx, fy) so the Jacobian matrix is

J =

(
fxx fxy
fyx fyy

)

By Continuity of Mixed Partials, fxy = fyx so J is symmetric.

Theorem: If F is conservative, then its Jacobian is symmetric.



Theorem: If F is conservative, then its Jacobian is symmetric.

The converse (Symmetric Jacobian Implies Conservative) is
FALSE in general.

Example: Consider the vector field F(x, y) =
(
−y

x2+y2
, x
x2+y2

)

defined for all (x, y) 6= (0, 0)

Then Jacobian =

(
− y2−x2

(x2+y2)2

y2−x2
(x2+y2)2

−

)



F(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
Has a Symmetric Jacobian But Is Not Conservative!

If F were conservative, then the line integral of F around any
closed loop would be 0.

Consider γ the unit circle as a loop running counterclockwise
starting and ending at (1.0).



F(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
γ: unit circle as a loop running counterclockwise starting and

ending at (1.0).
We parametrize γ by g(t) = (cos t, sin t), 0π so that

g′(t) = (− sin t, cos t) and

F(g(t)) =

(
− sin t

cos2 t+ sin2 t
,

cos t

cos2 t+ sin2 t

)
= (− sin t, cos t)

F(g(t)) · g′(t) = (− sin t, cos t) · (− sin t, cos t) = sin2 t+ cos2 t = 1

Thus
∫
γ F =

∫ 2π
0 1 dt = 2π 6= 0.



What is Wrong the Vector Field

F(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
?

The Domain of the Vector Field
(Plane minus the Origin)
Is Not Simply Connected.



Simple Connectedness
A set B is simply connected if every closed curve in B can be
continuously contracted to a point in such a way as to stay in B

during the contraction. More precisely,

Definition: An open set B issimply connected if every piecewise
smooth closed curve lying in B is the border of some piecewise

smooth orientable surface S lying in B, and with parameter
domain a disk in R2.

Theorem: Let F be a continuously differentiable vector field
defined on an open set B in R2 or R3. If B is simply connected

and curl F is identically zero in B, then F is a gradient field in B ;
that is, there is a real-valued function f such that F = ∇f









Theorem: Let F be a continuously differentiable vector field
defined on an open set B in R2 or R3. If B is simply connected

and curl F is identically zero in B, then F is a gradient field in B ;
that is, there is a real-valued function f such that F = ∇f


