MATH 223: Multivariable Calculus

Notes on Assignment 31 Assignment 32 Surface Integrals

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Announcements

Course Response Forms

In Class, Monday, December 12 Bring Laptop/Smart Phone

Final Exam

Wednesday, December 14 9– Noon

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conservative Vector Fields

F is continuously differentiable vector field in the plane $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ with $\mathbf{F}(x, y) = (F(x, y), G(x, y))$ where F and G are each real-valued functions. Here curl **F** is a real-valued function $G_x - F_y$

Green's Theorem: $\int_D \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F}$

Three Important Properties of Vector Fields

A F is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$

- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = \mathbf{0}$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT

A implies B

A F is **CONSERVATIVE**means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$ **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$

Suppose **F** is Conservative Then $(F,G) = \mathbf{F} = \nabla f = (f_x, f_y)$ so $f_x = F$ and $f_y = G$ Thus $G_x = f_{yx}$ and $F_y = f_{xy}$ so curl $\mathbf{F} = G_x - F_y = f_{yx} - f_{xy} = 0$

by equality of mixed partials.

B implies **C** will follow from Green's Theorem

- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.
- Let **a** and **b** are any points in the plane and γ_1 and γ_2 two paths from **a** to **b**. Then $-\gamma_1$ runs from **b** to **a**

and $\gamma = \gamma_1 - \gamma_2$ is a loop that begins and ends at **a** Let D be the enclosed region.

By Green's Theorem
$$\int_{\gamma} \mathbf{F} = \iint_{D} \text{ curl } \mathbf{F} = \iint_{D} 0 = 0$$

Thus $0 = \int_{\gamma} \mathbf{F} = \int_{\gamma_1 - \gamma_2} \mathbf{F} = \int_{\gamma_1} \mathbf{F} - \int_{\gamma_2} \mathbf{F}$
Hence $\int_{\gamma_2} \mathbf{F} = \int_{\gamma_1} \mathbf{F}$

C implies A

- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.
- **A F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$

Idea:

Fix \mathbf{x}_0 in \mathbb{R}^n and let \mathbf{x} be arbitrary point in \mathbb{R}^n . Let γ be a curve from \mathbf{x}_0 to \mathbf{x} . Then $\int_{\gamma} \mathbf{F}$ will be a function of \mathbf{x} whose gradient is \mathbf{F} .

<u>Theorem</u> Let \mathbf{F} be a continuous vector field defined in a polygonally connected open set D of \mathbb{R}^n . If the line integral $\int_{\gamma} \mathbf{F}$ is independent of piecewise smooth path γ from \mathbf{x}_0 to \mathbf{x} in D, then if $f(\mathbf{x}) = \int_{\gamma} \mathbf{F}$, it is true that $\nabla f = \mathbf{F}$.

Example **F** $(x, y) = (3x^2 + y, e^y + x)$ Here **F** = (F, G) so $F(x, y) = 3x^2 + y, G(x, y) = e^y + x$ Hence $F_{y} = 1, G_{x} = 1$ so curl $\mathbf{F} = G_{x} - F_{y} = 0$ Let's build f so its gradient $\nabla f = (f_x, f_y) = (3x^2 + y, e^y + x)$ We need $f_x = 3x^2 + y$ so do "partial integration with respect to r'' $f(x) = x^3 + yx + q(y)$. [Why is there q(y)?] Then $f_y = 0 + x + q'(y)$ which should equal $x + e^y$ so need $q'(y) = e^y$ which we can get by letting $q(y) = e^y$. Hence we can choose $f(x, y) = x^3 + yx + e^y + C$.

Let's build the potential function in a different way using the theorem with $\mathbf{F}(x, y) = (3x^2 + y, e^y + x)$ Pick $\mathbf{x}_0 = (0,0)$ and let $\mathbf{x} = (x,y)$ be an arbitrary point. Choose the straight line between them as the path γ with parametrization $q(t) = (xt, yt), 0 \le t \le 1$ so q'(t) = (x, y)Then $\mathbf{F}(q(t)) = F(xt, yt) = (3x^2t^2 + yt, e^{yt} + x)t$ so $\mathbf{F}(q(t)) \cdot q'(t) = (3x^2t^2 + yt, e^{yt} + xt) \cdot (x, y)$ $= 3x^{3}t^{2} + xyt + ye^{yt} + xyt = 3x^{3}t^{2} + 2xyt + ye^{yt}$ Now $\int_{\infty} \mathbf{F} = \int_{0}^{1} (3x^{3}t^{2} + 2xyt + ye^{yt}) dt$ $= \left[x^{3}t^{3} + xyt^{2} + e^{yt}\right]_{t=0}^{t=1}$ $=(x^{3} + xy + e^{y}) - (0 + 0 + 1) = x^{3} + xy + e^{y} - 1$

<u>Theorem</u> Let \mathbf{F} be a continuous vector field defined in a polygonally connected open set D of \mathbb{R}^n . If the line integral $\int_{\gamma} \mathbf{F}$ is independent of piecewise smooth path γ from \mathbf{x}_0 to \mathbf{x} in D, then if $f(\mathbf{x}) = \int_{\gamma} \mathbf{F}$, it is true that $\nabla f = \mathbf{F}$.

Let g be a parametrization of line segment from ${\bf x}$ to ${\bf x}+t{\bf u}$ so $g(t)={\bf x}+v{\bf u}, 0\leq v\leq t$ and $g'(t)={\bf u}$

$$\begin{aligned} f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x}) &= \int_{\mathbf{x}_0}^{\mathbf{x} + t\mathbf{u}} \mathbf{F} - \int_{\mathbf{x}_0}^{\mathbf{x}} \mathbf{F} = \int_{\mathbf{x}}^{\mathbf{x} + t\mathbf{u}} \mathbf{F}(\mathbf{x} + v\mathbf{u}) \\ &= \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To find $\frac{\partial f}{\partial x_j}(\mathbf{x})$, let **u** be the unit vector $\mathbf{e}_j = (0, 0, \dots, 1, 0, 0, \dots)$. 0) in the *j*th direction.

$$\frac{\partial f}{\partial x_j}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{e}_j) \cdot \mathbf{e}_j \, dv$$

But this last expression is the derivative of the integral with respect to t evaluated at t = 0 which is $\mathbf{F} \cdot \mathbf{e}_j = F_j(\mathbf{x})$ (Using Fundamental Theorem of Calculus)

Symmetry of Jacobian Matrix for Conservative Vector Field

Let
$$\mathbf{F} = (F(x, y), G(x, y))$$
 be a conservative vector field in the
plane which we can recognized by $G_x = F_y$
 $\mathbf{F'} = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix}$ Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?

Example: $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$F(x, y, z) = (yz^{2} + \sin y + 3x^{2}, xz^{2} + x \cos y + e^{z}, 2xyz + ye^{z} + \frac{1}{z})$$

$$\mathbf{F'} = \begin{pmatrix} 6x & z^{2} + \cos y & 2yz \\ z^{2} + \cos y & -x \sin y & 2xz + e^{z} \\ 2yz & 2xz + e^{z} & 2xy + ye^{z} - \frac{1}{z^{2}} \end{pmatrix}$$

$$To find f so that \nabla f = \mathbf{F}:$$

Step 1: integrate first component of **F** with respect to *x*: $f(x, y, z) = yz^{2}x + x\sin y + x^{3} + G(y, z)$

Step 2: Take derivative of trial f respect to y and set equal to second component of \mathbf{F} :

$$\begin{split} f_y &= z^2 x + x \cos y + 0 + G_y(x,y) \text{ must } = xz^2 + x \cos y + e^z \\ \text{Need } G_y(x,y) &= e^z \text{ so choose } G(x,y) = e^z y + H(z) \\ \text{So far, } f(x,y,z) &= yz^2 x + x \sin y + x^3 + e^z y + H(z) \end{split}$$

Step 3: Take derivative of trial f respect to z and set equal to third component of \mathbf{F} ;

<u>Theorem</u> If **F** is a conservative vector field on $\mathbb{R}^N = n$ and is continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

<u>Theorem</u> Suppose **F** is a continuously differentiable vector field on \mathbb{R}^n whose Jacobian matrix is symmetric. Then **F** is conservative

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integrating Vector Fields Over Surfaces

 $g(u,v)=[u,v,-2u^2-3v^2] \quad g(u,v)=[u\cos v,u\sin v,v]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Integrating Vector Fields Over Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Surface Integral

Let g be a function from an interval $[t_0, t_1]$ into \mathbb{R}^n with image γ and μ density at q(t). Then Mass of Wire = $\int_{t_0}^{t_1} \mu(t) |g'(t)| dt$ If $\mu \equiv 1$, then mass = length of curve $\int_{t_0}^{t_1} |g'(t)| dt$ Generalize To Surfaces Let D be region in plane and $q: D \to \mathbb{R}^3$ with $g(u, v) = (q_1, q_2, q_3)$ where each component function q_i is continuously differentiable. There are two natural tangent vectors: $g_u = \frac{\partial g}{\partial u}$ and $g_v = \frac{\partial g}{\partial u}$. These determine a tangent plane. S is a **Smooth Surface** if these two vectors are linearly independent. Note that $\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}$ is normal to the plane with

 $\begin{aligned} |\frac{\partial g}{\partial u}\times\frac{\partial g}{\partial v}| &= |\frac{\partial g}{\partial u}||\frac{\partial g}{\partial v}|\sin\theta\\ &= \text{Area of Parallelogram Spanned by the Vectors} \end{aligned}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Surface Area

 $\sigma(S) = \iint_D |\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}| \, du dv = \iint_D |g_u \times g_v| \, du dv$

If $\mu(g(u, v))$ is density, then mass = $\iint_D \mu \, d\sigma = \iint_D \mu(g(u, v)) |g_u \times g_v| \, du dv$

Plotting Parametrized Surface in Maple: plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)

$\begin{array}{l} \textbf{Area of a Spiral Ramp}\\ g(u,v) = (u\cos v, u\sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 3\pi \end{array}$

Area of a Spiral Ramp $g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$ $q_u = (\cos v, \sin v, 0), q_v = (-u \sin v, u \cos v, 1)$ $g_u \times g_v = \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 0 \\ -u \sin v & u \cos v & 1 \end{vmatrix}$ $= \left(\begin{vmatrix} \sin v & 0 \\ u \cos v & 1 \end{vmatrix}, - \begin{vmatrix} \cos v & 0 \\ -u \sin v & 1 \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u \sin v & u \cos v \end{vmatrix} \right)$ $= (\sin v, -\cos v, u)$ Then $|g_u \times g_v| = \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2}$ Area = $\int_{u=0}^{u=3\pi} \int_{u=0}^{1} \sqrt{1+u^2} \, du \, dv$

If density is $\mu(\mathbf{x}) = u$, then Mass = $\int_{v=0}^{v=3\pi} \int_{u=0}^{u=1} u(1+u^2)^{1/2} du dv = \int_{v=0}^{v=3\pi} \left[\frac{1}{3}(1+u^2)^{3/2}\right]_0^1 dv$ $= \int_{v=0}^{v=3\pi} \frac{1}{3}[2^{3/2} - 1^{3/2}] dv = 3\pi \frac{1}{3}[2^{3/2} - 1] = \pi[2^{3/2} - 1]$

くしゃ 本語 アメヨア メヨア しゅう

Integrating A Vector Field Over the Spiral Ramp

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integrating A Vector Field Over the Spiral Ramp $g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$ $g_u = (\cos v, \sin v, 0), g_v = (-u \sin v, u \cos v, 1)$ $q_u \times q_v = (\sin v, -\cos v, u)$ Suppose our vector field is $\mathbf{F}(x, y, z) = (x^2, 0, z^2)$ So $F(q(u, v)) = (u^2 \cos^2 v, 0, v^2)$ The set $D = \{(u, v) : 0 \le u \le 1, 0 \le v \le 3\pi\}$ We want $\int_D F(g(u,v)) \cdot (g_u \times g_v)$ which equals $\int_{u=0}^{3\pi} \int_{u=0}^{\overline{1}} \left[u^2 \cos^2 v \sin v + uv^2 \right] du dv$ $= \int_{v=0}^{3\pi} \left[\frac{u^3}{3} \cos^2 v \sin v + \frac{u^2}{2} v^2 \Big|_{u=0}^1 \right] dv =$ $\int_{v=0}^{3\pi} \left[\frac{1}{3} \cos^2 v \sin v + \frac{1}{2} v^2 \right] dv$ $= \left[\frac{-\cos^3 v}{9} + \frac{v^3}{6} \right]^{3\pi} = \frac{1}{9} + \frac{3^3 P i^3}{6} - \frac{-1}{9} = \frac{2}{9} + \frac{9}{2} \pi^3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gauss's Theorem aka Divergence Theorem Planar Version: $\int_D \text{div } \mathbf{F} = \int_{\gamma} \mathbf{F} \cdot \mathbf{N}$

Three Dimensional Version

 ∂R is 2-dimensional surface surrounding 3-dimensional region R $\int_R \ {\rm div} \ {\bf F} = \int_{\partial R} {\bf F} \cdot {\bf N}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gauss's Theorem

The Setting

- ${\mathcal R}$ Bounded Solid Region in ${\mathbb R}^3$
- - **F** Continuously Differentiable Vector Field in \mathcal{R}

The Theorem

In this setting
$$\int_{\mathcal{R}} \operatorname{div} \mathbf{F} \, dV = \int_{\partial \mathcal{R}} \mathbf{F} \cdot d\mathbf{S}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example Verify Gauss's Theorem where \mathcal{R} is solid cylinder of radius a and height b with the z-axis as the axis of the cylinder and

For $\int_{Bottom} \mathbf{F} \cdot dS$, unit normal is (0,0,-1) Then $(x, y, z) \cdot (0, 0, -1) = -z$ but z = 0 so $\int_{Bottom} \mathbf{F} \cdot dS = 0$

For $\int_{Top} \mathbf{F} \cdot dS$, unit normal is (0,0,1) Then $(x, y, z) \cdot (0, 0, +1) = z$ but z = b so $\int_{Top} \mathbf{F} \cdot dS$ is $b \times$ area of top $= b\pi a^2$

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ □ ▶ ● ○ ○ ○ ○

Vector Field $\mathbf{F} = (x, y, z)$ Surface: $x^2 + y^2 = a^2, 0 \le z \le b$ $g(u, v) = (a \cos u, a \sin u, v), 0 \le u \le 2\pi, 0 \le v \le b$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\begin{split} \text{Finally, } & \int_{Side} \mathbf{F} \cdot dS \\ g(u,v) &= (a\cos u, a\sin u, v), 0 \leq u \leq 2\pi, 0 \leq v \leq b \\ g_u &= (-a\sin u, a\cos u, 0), \ g_v &= (0,0,1) \\ & \mathbf{g}_u \times g_v = \ \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a\sin u & a\cos u & 0 \\ 0 & 0 & 1 \end{vmatrix} \\ = & (\text{expanding along bottom row}) \ (a\cos u, a\sin u, 0) \\ & \text{Thus } |g_u \times g_v| = \sqrt{a^2\cos^2 u + a^2\sin^2 u + 0^2} = a \\ \text{Also } F(g(u,v)) &= (a\cos u, a\sin u, v) \ \text{so } F(g(u,v)) \cdot (g_u \times g_v) = \\ & a^2\cos^2 u + a^2\sin^2 u + 0 = a^2. \\ & \text{so } \int_{Side} \mathbf{F} \cdot dS = \int_{v=0}^{b} \int_{u=0}^{2\pi} a^2 du \ dv = 2\pi a^2 b \\ & \text{Putting it altogether: } \int_{S} \mathbf{F} \cdot dS \\ &= \int_{Bottom} \mathbf{F} \cdot dS + \int_{Top} \mathbf{F} \cdot dS + \int_{Side} \mathbf{F} \cdot dS = 0 + \pi a^2 b + 2\pi a^2 b = \\ & 3\pi a^2 b \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

On The Other Hand, we compute
$$\int_R \operatorname{div} \mathbf{F}$$

 $\mathbf{F} = (x, y, z)$
div $\mathbf{F} = 1 + 1 + 1 = 3$
The solid R is more easily described in polar coordinates
 $0 \le \theta \le 2\pi$ $0 \le r \le a$ $0 \le z \le b$.

$$\int_{R} \operatorname{div} \mathbf{F} = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \int_{r=0}^{a} \operatorname{div} \mathbf{F} r dr dz d\theta = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \int_{r=0}^{a} 3r dr dz d\theta$$

$$\int_{\theta=0}^{2\pi} \int_{z=0}^{b} 3\frac{r^2}{2} \Big|_{r=0}^{a} dz d\theta = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \frac{3}{2} a^2 dz d\theta = \int_{\theta=0}^{2\pi} \frac{3}{2} a^2 b d\theta = 2\pi \frac{3}{2} a^2 b$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$=3a^2b\pi$$

Finding $\int_{S} \mathbf{F} \cdot d\sigma$ directly is impossible.

A Clever Way To Find $\int_{S} \mathbf{F} \cdot d\sigma$ indirectly.

Cap the Surface with a Disk so New Surface Bounds a 3-Dimensional Region

Form closed surface $S \cup S'$ where S' is the disk of radius 1 $(x^2 + y^2 = 1)$ in z = 0 plane.

Then
$$\int_{\partial r} \mathbf{F} = \int_{S \cup S'} \mathbf{F} = \int_{S} \mathbf{F} + \int_{S'} \mathbf{F}$$

But by Gauss's Theorem, this integral equals 0.
Hence $\int_{S} \mathbf{F} = -\int_{S'} \mathbf{F}$

Now

$$\int_{S'} \mathbf{F} = -\int (--, --, x^2 + y^2 + 3) \cdot (0, 0, -1) = \int x^2 + y^2 + 3 \, dx \, dy$$

$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{1} (r^2 + 3) \, r \, dt \, d\theta = \frac{7}{2}\pi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Next Time: Stokes's Theorem

$\int_{S} \operatorname{curl} \mathbf{F} = \int_{\partial S} \mathbf{F}$ S is a Surface in \mathbb{R}^{3}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00