
MATH 223: Multivariable Calculus

Class 34: December 7, 2022



Notes on Assignment 31
Assignment 32
Surface Integrals



Announcements
Course Response Forms

In Class, Monday, December 12
Bring Laptop/Smart Phone

Final Exam
Wednesday, December 14

9– Noon



Conservative Vector Fields
F is continuously differentiable vector field in the plane

F : R2 → R2 with F(x, y) = (F (x, y), G(x, y)) where F and G are
each real-valued functions.

Here curl F is a real-valued function Gx − Fy
Green’s Theorem:

∫
D curl F =

∫
γ F

Three Important Properties of Vector Fields

A F is CONSERVATIVE means F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

Suppose F is Conservative
Then (F,G) = F = ∇f = (fx, fy) so fx = F and fy = G

Thus Gx = fyx and Fy = fxy

so curl F = Gx − Fy = fyx − fxy = 0

by equality of mixed partials.



B implies C will follow from Green’s Theorem

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Let a and b are any points in the plane and γ1 and γ2 two paths
from a to b. Then −γ1 runs from b to a

and γ = γ1 − γ2 is a loop that begins and ends at a
Let D be the enclosed region.

By Green’s Theorem
∫
γ F =

∫∫
D curl F =

∫∫
D 0 = 0

Thus 0 =
∫
γ F =

∫
γ1−γ2 F =

∫
γ1

F−
∫
γ2

F

Hence
∫
γ2

F =
∫
γ1

F



C implies A

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

Idea:
Fix x0 in Rn and let x be arbitrary point in Rn.

Let γ be a curve from x0 to x.
Then

∫
γ F will be a function of x whose gradient is F.

Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.



Example F(x, y) = (3x2 + y, ey + x)
Here F = (F,G) so F (x, y) = 3x2 + y,G(x, y) = ey + x

Hence Fy = 1, Gx = 1 so curl F = Gx − Fy = 0
Let’s build f so its gradient ∇f = (fx, fy) = (3x2 + y, ey + x)

We need fx = 3x2 + y so do ”partial integration with respect to
x”:

f(x) = x3 + yx+ g(y). [ Why is there g(y)? ]
Then fy = 0 + x+ g′(y) which should equal x+ ey so need

g′(y) = ey

which we can get by letting g(y) = ey.
Hence we can choose f(x, y) = x3 + yx+ ey + C.



Let’s build the potential function in a different way using the
theorem with F(x, y) = (3x2 + y, ey + x)

Pick x0 = (0, 0) and let x = (x, y) be an arbitrary point. Choose
the straight line between them as the path γ with parametrization

g(t) = (xt, yt), 0 ≤ t ≤ 1 so g′(t) = (x, y)
Then F(g(t)) = F (xt, yt) = (3x2t2 + yt, eyt + x)t
so F(g(t)) · g′(t) = (3x2t2 + yt, eyt + xt) · (x, y)

= 3x3t2 + xyt+ yeyt + xyt = 3x3t2 + 2xyt+ yeyt

Now
∫
γ F =

∫ 1
0 (3x3t2 + 2xyt+ yeyt) dt

=
[
x3t3 + xyt2 + eyt

]t=1

t=0
= (x3 + xy + ey)− (0 + 0 + 1) = x3 + xy + ey − 1



Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.



Let g be a parametrization of line segment from x to x + tu so
g(t) = x + vu, 0 ≤ v ≤ t and g′(t) = u

f(x + tu)− f(x) =
∫ x+tu

x0
F−

∫ x
x0

F =
∫ x+tu

x F(x + vu)

=
∫ t
0 F(x + vu) · u dv



To find ∂f
∂xj

(x), let u be the unit vector ej = (0, 0, .. . , 1, 0, 0. .

. 0) in the jth direction.

∂f

∂xj
(x) = lim

t→0

f(x + tu)− f(x)

t

= lim
t→0

1

t

∫ t

0
F(x + vu) · u dv

= lim
t→0

1

t

∫ t

0
F(x + vej) · ej dv

But this last expression is the derivative of the integral with
respect to t evaluated at t = 0 which is F · ej = Fj(x) (Using

Fundamental Theorem of Calculus)



Symmetry of Jacobian Matrix for Conservative Vector Field

Let F = (F (x, y), G(x, y)) be a conservative vector field in the
plane which we can recognized by Gx = Fy

F’ =

(
Fx Fy
Gx Gy

)
Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?



Example: F: R3 → R3 by

F (x, y, z) = (yz2 + sin y+ 3x2, xz2 + x cos y+ ez, 2xyz+ yez + 1
z )

F’ =

 6x z2 + cos y 2yz
z2 + cos y −x sin y 2xz + ez

2yz 2xz + ez 2xy + yez − 1
z2


To find f so that ∇f = F:

Step 1: integrate first component of F with respect to x:
f(x, y, z) = yz2x+ x sin y + x3 +G(y, z)

Step 2: Take derivative of trial f respect to y and set equal to
second component of F :

fy = z2x+ x cos y + 0 +Gy(x, y) must = xz2 + x cos y + ez

Need Gy(x, y) = ez so choose G(x, y) = ezy +H(z)
So far, f(x, y, z) = yz2x+ x sin y + x3 + ezy +H(z)

Step 3:Take derivative of trial f respect to z and set equal to
third component of F ;

fz(x, y, z) = 2xyz + 0 + 0 + ezy +H ′(z) must = 2xyz + ezy + 1
z

Need H ′(z) = 1
z so choose H(x) = ln |z|+ C

Thus
f(x, y, z) = f(x, y, z) = yz2x+ x sin y + x3 + ezy + ln |z|+ C



Theorem If F is a conservative vector field on RN = n and is
continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.



Theorem Suppose F is a continuously differentiable vector field on
Rn whose Jacobian matrix is symmetric. Then F is conservative



Integrating Vector Fields Over Surfaces

g(u, v) = [u, v,−2u2 − 3v2] g(u, v) = [u cos v, u sin v, v]



Integrating Vector Fields Over Surfaces

g(u, v) = [u cos v, u sin v, v]



Smooth Curve γ Smooth Surface S

g : I in R1 → Rn g : D in R2 → R3

Length =
∫
I |g
′(t)| dt Area σ(S) =

∫∫
D |gu × gv|dudv

Mass =
∫
I µ(g(t))|g′(t)| dt Mass =

∫∫
D µ dσ

Line Integral Surface Integral∫
γ F =

∫
I F(g(t)) · g′(t) dt

∫∫
S F =

∫∫
D F(g(u, v)) · (gu × gv)∫∫

S F =
∫∫
S F · dS =

∫∫
S F ·N dσ

Φ(F, S) =
∫∫
S F is flux of F across S.



Surface Integral
Let g be a function from an interval [t0, t1] into Rn with image γ

and µ density at g(t).
Then Mass of Wire =

∫ t1
t0
µ(t)|g′(t)| dt

If µ ≡ 1, then mass = length of curve
∫ t1
t0
|g′(t)| dt

Generalize To Surfaces
Let D be region in plane and g : D → R3 with

g(u, v) = (g1, g2, g3) where each component function gi is
continuously differentiable.

There are two natural tangent vectors: gu = ∂g
∂u and gv = ∂g

∂v ,
These determine a tangent plane.

S is a Smooth Surface if these two vectors are linearly
independent.

Note that ∂g
∂u ×

∂g
∂v is normal to the plane with

| ∂g∂u ×
∂g
∂v | = |

∂g
∂u ||

∂g
∂v | sin θ

= Area of Parallelogram Spanned by the Vectors



sin θ = h
|b| so h = |b| sin θ

Area of Parallelogram = (Base)(Height) = |a||b| sin θ
a = gu,b = gv

|gu × gv| = |gu||gv| sin θ



Surface Area

σ(S) =
∫∫
D |

∂g
∂u ×

∂g
∂v | dudv =

∫∫
D |gu × gv| dudv

If µ(g(u, v)) is density, then mass =∫∫
D µ dσ =

∫∫
D µ(g(u, v))|gu × gv| dudv

Plotting Parametrized Surface in Maple:
plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π
gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣
=

(∣∣∣∣ sin v 0
u cos v 1

∣∣∣∣ ,− ∣∣∣∣ cos v 0
−u sin v 1

∣∣∣∣ , ∣∣∣∣ cos v sin v
−u sin v u cos v

∣∣∣∣)
= (sin v,− cos v, u)

Then |gu × gv| =
√

sin2 v + cos2 v + u2 =
√

1 + u2

Area =
∫ v=3π
v=0

∫ 1
u=0

√
1 + u2 du dv

If density is µ(x) = u, then Mass =∫ v=3π
v=0

∫ u=1
u=0 u(1 + u2)1/2 du dv =

∫ v=3π
v=0

[
1
3(1 + u2)3/2

]1
0
dv

=
∫ v=3π
v=0

1
3 [23/2 − 13/2] dv = 3π 1

3 [23/2 − 1] = π[23/2 − 1]



Integrating A Vector Field Over the Spiral Ramp



Integrating A Vector Field Over the Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π
gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = (sin v,− cos v, u)
Suppose our vector field is F(x, y, z) = (x2, 0, z2)

So F (g(u, v)) = (u2 cos2 v, 0, v2)
The set D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π}

We want
∫
D F (g(u, v)) · (gu × gv)

which equals
∫ 3π
v=0

∫ 1
u=0

[
u2 cos2 v sin v + uv2

]
du dv

=
∫ 3π
v=0

[
u3

3 cos2 v sin v + u2

2 v
2
∣∣1
u=0

]
dv =∫ 3π

v=0

[
1
3 cos2 v sin v + 1

2v
2
]
dv

=
[
− cos3 v

9 + v3

6

]3π
v=0

= 1
9 + 33Pi3

6 − −19 = 2
9 + 9

2π
3



Gauss’s Theorem aka Divergence Theorem
Planar Version:

∫
D div F =

∫
γ F · N

Three Dimensional Version
∂R is 2-dimensional surface surrounding 3-dimensional region R∫

R div F =
∫
∂R F ·N



Gauss’s Theorem

The Setting

R Bounded Solid Region in R3

∂R Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R

F Continuously Differentiable Vector Field in R

The Theorem

In this setting

∫
R

div F dV =

∫
∂R

F · dS



Example Verify Gauss’s Theorem where R is solid cylinder of
radius a and height b with the z-axis as the axis of the cylinder and

F = (x, y, z)

∫
S

F · dS =

∫
Bottom

F · dS +

∫
Top

F · dS +

∫
Side

F · dS



Cylinder of Radius a and height b

∫
S F · dS =

∫
Bottom F · dS +

∫
Top F · dS +

∫
Side F · dS

For
∫
Bottom F · dS, unit normal is (0,0,-1)

Then (x, y, z) · (0, 0,−1) = −z but z = 0 so
∫
Bottom F · dS = 0

For
∫
Top F · dS, unit normal is (0,0,1)

Then (x, y, z) · (0, 0,+1) = z but z = b so
∫
Top F · dS

is b× area of top = bπa2



Finally,
∫
Side F · dS

Vector Field F = (x, y, z)
Surface: x2 + y2 = a2, 0 ≤ z ≤ b

g(u, v) = (a cosu, a sinu, v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ b



Finally,
∫
Side F · dS

g(u, v) = (a cosu, a sinu, v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ b
gu = (−a sinu, a cosu, 0), gv = (0, 0, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

−a sinu a cosu 0
0 0 1

∣∣∣∣∣∣
=(expanding along bottom row) (a cosu, a sinu, 0)

Thus |gu × gv| =
√
a2 cos2 u+ a2 sin2 u+ 02 = a

Also F (g(u, v)) = (a cosu, a sinu, v) so F (g(u, v)) · (gu × gv) =
a2 cos2 u+ a2 sin2 u+ 0 = a2.

so
∫
Side F · dS =

∫ b
v=0

∫ 2π
u=0 a

2 du dv = 2πa2b
Putting it altogether:

∫
S F · dS

=
∫
Bottom F · dS +

∫
Top F · dS +

∫
Side F · dS = 0 + πa2b+ 2πa2b =

3πa2b



On The Other Hand, we compute
∫
R div F

F = (x, y, z)
div F = 1 + 1 + 1 = 3

The solid R is more easily described in polar coordinates
0 ≤ θ ≤ 2π 0 ≤ r ≤ a 0 ≤ z ≤ b.

∫
R

div F =

∫ 2π

θ=0

∫ b

z=0

∫ a

r=0
div Frdrdzdθ =

∫ 2π

θ=0

∫ b

z=0

∫ a

r=0
3rdrdzdθ

∫ 2π

θ=0

∫ b

z=0
3
r2

2
|ar=0dzdθ =

∫ 2π

θ=0

∫ b

z=0

3

2
a2dzdθ =

∫ 2π

θ=0

3

2
a2bdθ = 2π

3

2
a2b

= 3a2bπ



Example: F = (ey cos z,
√
x3 + 1 sin z, x2 + y2 + 3)

div F = 0 + 0 + 0 = 0
so
∫
R div F = 0 for any region in R3.

Let S be graph of z = (1− x2 − y2)e1−x2−3y2) for z ≥ 0
oriented by outward pointing unit normal vector.

Finding
∫
S F · dσ directly is impossible.



A Clever Way To Find
∫
S F · dσ indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S ∪ S′ where S′ is the disk of radius 1
(x2 + y2 = 1) in z = 0 plane.

Then
∫
∂r F =

∫
S∪S′ F =

∫
S F +

∫
S′ F

But by Gauss’s Theorem, this integral equals 0.
Hence

∫
S F = −

∫
S′ F

Now∫
S′ F = −

∫
(−−,−−, x2 +y2 + 3) · (0, 0,−1) =

∫
x2 +y2 + 3dxdy

=
∫ 2π
θ=0

∫ 1
r=0(r

2 + 3) r dt dθ = 7
2π



Next Time:

Stokes’s Theorem∫
S

curl F =

∫
∂S

F

S is a Surface in R3


