MATH 223: Multivariable Calculus

Class 34: December 7, 2022



Notes on Assignment 31
Assignment 32
Surface Integrals



Announcements

Course Response Forms
In Class, Monday, December 12
Bring Laptop/Smart Phone

Final Exam
Wednesday, December 14
9- Noon



Conservative Vector Fields
F is continuously differentiable vector field in the plane
F:R? — R? with F(z,y) = (F(x,y),G(z,y)) where F and G are
each real-valued functions.
Here curl F is a real-valued function G, — F},
Green's Theorem: [, curl F= [ F

Three Important Properties of Vector Fields
A F is CONSERVATIVE means F = Vf for some f:R? — R!
B F is IRROTATIONAL means curl F =0

C Fis PATH INDEPENDENT means fw F= f72 F for any
paths v, and 2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B
A F is CONSERVATIVEmeans F = Vf for some f : R? — R!
B F is IRROTATIONAL means curl F =0

Suppose F is Conservative
Then (F,G) = F = Vf = (fa, f,) 50 fo = F and f, = G

Thus Gy = fyp and F, = fo,
socurl F =G, — Fy = fye — fay =0

by equality of mixed partials.



B implies C will follow from Green's Theorem
B F is IRROTATIONAL means curl F =0
C F is PATH INDEPENDENT means fw F= fw F for any
paths 71 and = from a to b where a and b are any points in
the plane.
Let a and b are any points in the plane and 1 and 75 two paths
from a to b. Then —~; runs from b to a

¥2 b

vl

and v =71 — 72 is a loop that begins and ends at a
Let D be the enclosed region.
By Green's Theorem f F= ffD curl F= [[,0=0
Thus():f F= fﬂﬂ . _wa fWF

Hence [ F=[ F



C implies A
C Fis PATH INDEPENDENT means [ F = [ F for any
71 Y2

paths 1 and ~» from a to b where a and b are any points in
the plane.

A F is CONSERVATIVEmeans F = Vf for some f : R? — R!

Idea:
Fix xo in R™ and let x be arbitrary point in R™.
Let v be a curve from xg to x.
Then f7 F will be a function of x whose gradient is F.

Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of R". If the line integral f7 F
is independent of piecewise smooth path « from xg to x in D, then
if f(x) = [, F, itis true that Vf =F.



Example F(z,y) = (322 + y,e¥ + )
Here F = (F,G) so F(z,y) = 322 + y,G(x,y) = e + o

Hence Iy =1,G, =1socurl F=G, — F, =0
Let's build f so its gradient Vf = (fs, f,) = (32° + y,e¥ + )
We need f, = 322 4+ y so do " partial integration with respect to

x
f(x) =23 +yz + g(y). [ Why is there g(y)? ]
Then f, = 0+ x + ¢(y) which should equal = + €Y so need
g'(y) = e
which we can get by letting g(y) = ev.
Hence we can choose f(z,y) = 2% + yz +e¥ + C.



Let's build the potential function in a different way using the
theorem with F(z,y) = (322 + y,e¥ + z)

Pick xo = (0,0) and let x = (x,y) be an arbitrary point. Choose
the straight line between them as the path v with parametrization
g(t) = (at,yt),0 <t < 1so g'(t) = (x,9)

Then F(g(t)) = F(at, yt) = (32212 + yt, e¥* + x)t
so F(g(t)) - g'(t) = (32 + yt, ¥ + at) - (z,y)
= 32312 + xyt + ye¥t + wyt = 323t 4 2wyt + ye¥
Now [ F = f01(3x3t2 + 2zyt + ye¥t) dt

= [233 + 2yt + ev] )~

=@ +ay+e’)—(0+0+1)=a3+ay+e¥—1



Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of R”. If the line integral f,y F
is independent of piecewise smooth path 7 from xg to x in D, then
if f(x) = [, F, itis true that Vf =F.

X0



Let g be a parametrization of line segment from x to x + tu so
g(t) =x+ovu,0<v<tand ¢'(t) =u

f(x+tu) — f(x) = fx+t"F Jo F= LM E(x + vu)
—fo (x4 vu) -udv



To find a%(’()v let u be the unit vectore; = (0,0, .. . ,1,0,0. .
. 0) in the jth direction.

t

1
=lim- [ F(x+ou)-udv
t—0 t 0

t
=lim- [ F i)-ejd
lim - ; (x 4+ ve;) - ej dv
But this last expression is the derivative of the integral with
respect to t evaluated at ¢ = 0 which is F - e; = Fj(x) (Using
Fundamental Theorem of Calculus)



Symmetry of Jacobian Matrix for Conservative Vector Field

Let F = (F(x,y),G(z,y)) be a conservative vector field in the
plane which we can recognized by G, = F,

F = Fe Iy Note symmetry of Jacobian Matrix.
G, G,

How do things generalize to higher dimensions?



Example: F: R? — R? by
F(z,y,z) = (y2* +siny + 32%, 22 + x cosy + €7, 2xyz + ye* + 1)
6x 2% + cosy 2yz
F'=|224cosy —uxsiny 2xz + €7
( 2yz 20z +e*  2xy+ ye* — 212)
To find f so that Vf =F:
Step 1: integrate first component of F with respect to z:
f(z,y,2) = yz2z + xsiny + 23 + G(y, 2)
Step 2: Take derivative of trial f respect to y and set equal to
second component of F :
fy =22t +xcosy+ 0+ Gy(x,y) must = 122 + zcosy + €*
Need Gy(x,y) = e* so choose G(z,y) = e’y + H(z)
So far, f(z,y,2) = yz2x + zsiny + 2% + e*y + H(z)
Step 3:Take derivative of trial f respect to z and set equal to
third component of F ;
fo(x,y,2) = 2:Uyz+0—|—0+ezy+H’( ) must = 2xyz+ezy—|—%
Need H'(z) = = so choose H(z) =In|z| + C
Thus
f(z,y,2) = f(z,y,2) = yz?x + xsiny + 23 + ey + In|z| + C



Theorem If F is a conservative vector field on RY = n and is
continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.



Theorem Suppose F is a continuously differentiable vector field on
R™ whose Jacobian matrix is symmetric. Then F is conservative



Integrating Vector Fields Over Surfaces




Integrating Vector Fields Over Surfaces

g(u,v) = [ucosv,usinv,v]

m]

=



Smooth Curve ~ Smooth Surface S
g:IinR' - R" g:DinR? - R?
Length = [, |¢'(t)| dt Area o(S) = [[p |gu x gv|dudv
Mass = [, u(g(t))|g'(t)] dt Mass = [[, udo
Line Integral Surface Integral
[, F=[;Fg®)-d@t)dt | [[sF= [[,F( ) - (9u X gv)

JIsF=[[sF-dS = [[¢F-Ndo

S) = [[4F is flux of F across S.



Surface Integral
Let g be a function from an interval [tg, 1] into R™ with image ~
and p density at g(t).
Then Mass of Wire = tzl w(t)|g'(t)] dt
If =1, then mass = length of curve j:;l lg'(t)| dt
Generalize To Surfaces
Let D be region in plane and g : D — R3 with
g(u,v) = (g1, 92, g3) where each component function g; is
continuously differentiable.
There are two natural tangent vectors: g, = % and g, = %,
These determine a tangent plane.
S is a Smooth Surface if these two vectors are linearly
independent.
Note that g—z X % is normal{ to the plane with
192 x 92| = 19213 sin
= Area of Parallelogram Spanned by the Vectors



a
sinf = % so h = |b|sinf
Area of Parallelogram = (Base)(Height) = |a||b]|sin 6
a=gy,b=g,
‘gu X gv’ = |gquv|Sin0



Surface Area

= [[p 152 99 5 8g|dudv—ffD\gu X gy| dudv

If u(g(u,v)) is density then mass =
ffD,udJ—ffD,u U, )| gy X go| dudv

Plotting Parametrized Surface in Maple:
plot3d([gl(u,v), g2(u,v), g3(u,v)],u = ...,v = ...)



Area of a Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u <1,0<v <3rm

=] 5 = = £ DA



Area of a Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u<1,0<v < 3w
gu = (cosw,sinv,0), g, = (—usinv,ucosv, 1)
i j k
Ju X gy = det | cosw sinv 0
—usinv wucosv 1

uwcosv 1| |—wsinv 1|’ |—usinv wcoswv

- | )
— (sinv, — cos v, u)

Then |gy X gu| = \/sm v+ cos? v+ u? =1+ u?
Area = [ 3”];:0\/1+u2 du dv

sinv 0‘ ‘ Ccos v 0 COS v sinv

If density is = u, then Mass =
(x
I =T ;_0 w(l 4+ u?)? du dv = U_?”T[ (14w )3/2](1] dv

= [VT (232 — 132 dv = 37k [23/2 — 1] = n[23/2 - 1]



Integrating A Vector Field Over the Spiral Ramp




Integrating A Vector Field Over the Spiral Ramp
g(u,v) = (ucosv,usinv,v),0 <u<1,0<v<3r
gu = (cosw,sinv,0), g, = (—usinv,ucosv, 1)

u X gy = (sinwv, — cosv, u)

Suppose our vector field is F(x,y, z) = (22,0, 22)
So F(g(u,v)) = (u?cos®v,0,v?)

The set D = {(u,v) : 0<u<1,0<wv<3m}
We want fD F(g(u,v)) : (gu X gv)
which equals f?m ful 0 [uQ cos® vsinv + qu] du dv

_ 37 2|1 _
f |:3COS vsmv+2v‘ 0} dv =

fvgiro [:1)) cos? vsinv + v?] dv

_ | =cos?w W3 7" _ 33Pz -1 _ 2 9.3
_[T"‘F =g+t - =5t




Gauss’s Theorem aka Divergence Theorem
Planar Version: [, div F = f,y F-N

Three Dimensional Version
OR is 2-dimensional surface surrounding 3-dimensional region R

[ dvF= [, F-N



OR

Gauss’s Theorem
The Setting

Bounded Solid Region in R?

Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R
Continuously Differentiable Vector Field in R

The Theorem

In this setting / div FdV = / F-dS
OR

R



Example Verify Gauss's Theorem where R is solid cylinder of

radius a and height b with the z-axis as the axis of the cylinder and
F=(z,y,2)

/F-dS: F-dS+/ F-dS+/ F.dS
S Bottom Top Stide

m]

=



Cylinder of Radius @ and height b

Top

Bottom

st‘d5=fBottomF'd5+fTopF'd5+fsz~deF'dS

For [5.stom F - dS, unit normal is (0,0,-1)
Then (z,y,2) - (0,0,—1) = —z but =050 [, F-dS =0

For [r,, F - dS, unit normal is (0,0,1)
Then (z,y,2) - (0,0,+1) =z but z =bso [, F-dS
is b x area of top = bra?



Finally, [, F-dS

Vector Field F = (z,y, 2)
Surface: 22 + 92 =a%,0<2<b
g(u,v) = (acosu,asinu,v),0 <u<21,0<v<b



Finally, [g,, F-dS
g(u,v) = (acosu,asinu,v),0 <u<2r,0<v<b
gu = (—asinu,acosu,0), g, = (0,0,1)

i j k
Ju X gy = det |—asinu acosu 0
0 0 1

=(expanding along bottom row) (a cosu,asinu,0)
Thus [gy X go| = Va2cos2u+ a?sin?u+ 02 = a
Also F(g(u,v)) = (acosu,asinu,v) so F(g(u,v)) - (gu X gv) =
a?cos? u + a’sin®u + 0 = a?.
50 [giqo F-dS = [*_ o [27, a® du dv = 2ma®D
Putting it altogether: [ F-dS
= fBottomF'ds+fTopF'dS+fSideF'dS =04 7a’b + 2ma’b =
3ra?b




On The Other Hand, we compute [, div F
F=(z,y,2)
dvF=1+1+4+1=3
The solid R is more easily described in polar coordinates
0<6<2r 0<r<a 0<z<b.

/ div F = / / / div Frdrdzdf —/ / / 3rdrdzdf
[’ 2=0Jr=0 z=0Jr=0
27
/ / |T Odzda—/ / 3 2dzd9_/ 3 2bd = 255 3 a’b
9=0J 2=0 9=0J2=0 2 o=0 2

= 3a’br



Example: F = (e¥ cos z, Va3 + 1sin z, 2% + y? + 3)
dvF=0+0+0=0
so [ div F =0 for any region in R®.
Let S be graph of z = (1 — 22 — y2)e!=**=3v*) for z > 0
oriented by outward pointing unit normal vector.

Finding fS F - do directly is impossible.



A Clever Way To Find fs F - do indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S U S’ where S’ is the disk of radius 1
(22 +y?>=1) in z = 0 plane.

Then [o, F= oo F=JsF+ [oF
But by Gauss's Theorem, this integral equals 0.

Hence [(F=— [, F

Now
JoF==J(— =2 +y*+3)-(0,0,-1) = [2* +y*+3dxdy
= 92;1-0 fr1:0(7a2 + 3) rdt d9 = %7{'



Next Time:

Stokes’'s Theorem

/curIF:/ F
S 0S

S is a Surface in R?



