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Notes on Assignment 30
Assignment 31

Conservative Vector Fields
Surface Integrals



Announcements
Independent Projects Due Friday

Today
Proof of Green’s Theorem
Conservative Vector Fields

Surface Integrals



Green’s Theorem in the Plane∫∫
D

curl F =

∫
γ

F

D is bounded plane region.
C = γ is piecewise smooth boundary of D

F and G are continuously differentiable functions defined on D
Then∫ ∫

(Gx − Fy)dxdy =

∫
γ
(F,G)

where γ is parametrized so it is traced once with D on the left.



Proof of Green’s Theorem in an Elementary Case
Case : Boundary of D is made up of the graphs of two functions

defined on interval [a, b].

Ingredients:
Vector Field F = (F,G) = (F, 0) + (0, G)

γ1 = image of g1
γ2 = image of g2

Need to show
∫∫
D[Gx − Fy] =

∫
γ F =

∫
γ [(F, 0) + (0, G)]

Will show
∫∫
D −Fy =

∫
γ(F, 0)



Need to show
∫∫
D[Gx − Fy] =

∫
γ F =

∫
γ [(F, 0) + (0, G)]

Will show
∫∫
D −Fy =

∫
γ(F, 0)

We tackle the line integral first. Start with γ1

We can parametrize γ1 by a function g(t) = (t, φ(t)) for a ≤ t ≤ b

Then g′(t) = (1, φ
′
1(t))

Now (F, 0) · g′(t) = (F, 0) · (1, φ′
1(t)) = F = F (t, φ1(t))

so
∫
γ1

(F, 0) =
∫ b
a F (t, φ1(t)) dt



Now we take up γ2

Consider Parametrization of γ2 as g(t) = (t, φ2(t)), a ≤ t ≤ b.
This would actually traces out γ2 in the opposite direction. It is

the parametrization of −γ2
Again we have g′(t) = (1, φ

′
2) and (F, 0) · g′(t) = F (t, φ2(t))

so
∫
−γ2(F, 0) =

∫ b
a F (t, φ2(t)).

Thus
∫
−γ2(F, 0) = −

∫
γ2

= −
∫ b
a F (t, φ2(t)).

Finally,
∫
γ(F, 0) =

∫
γ1

(F, 0) +
∫
γ2

(F, 0)

=
∫ b
a F (t, φ1(t)) dt−

∫ b
a F (t, φ2(t)) dt∫

γ
(F, 0) =

∫ b

a
F (t, φ1(t))− F (t, φ2(t)) dt



Goal: Show
∫∫
D −Fy =

∫
γ(F, 0)

So far:
∫
γ(F, 0) =

∫ b
a F (t, φ1(t))− F (t, φ2(t)) dt

Now turn to the curl part:

∫∫
D
−Fy = −

∫∫
D
Fy =

∫ x=b

x=a

∫ y=φ2(x)

y=φ1(x)
−Fy(x, y) dy dx

= −
∫ b

a
[F (x, φ2(x))− F (x, φ1(x)] dx

= −
∫ b

a
[F (t, φ2(t))− F (t, φ1(t)] dt( let t = x)

=

∫ b

a
[F (t, φ1(t))− F (t, φ2(t)] dt



Conservative Vector Fields
F is continuously differentiable vector field in the plane

F : R2 → R2 with F(x, y) = (F (x, y), G(x, y)) where F and G are
each real-valued functions.

Here curl F is a real-valued function Gx − Fy
Green’s Theorem:

∫
D curl F =

∫
γ F

Three Important Properties of Vector Fields

A F is CONSERVATIVE means F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

B F is IRROTATIONAL means curl F = 0

Suppose F is Conservative
Then (F,G) = F = ∇f = (fx, fy) so fx = F and fy = G

Thus Gx = fyx and Fy = fxy

so curl F = Gx − Fy = fyx − fxy = 0

by equality of mixed partials.



B implies C will follow from Green’s Theorem

B F is IRROTATIONAL means curl F = 0

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

Let a and b are any points in the plane and γ1 and γ2 two paths
from a to b. Then −γ1 runs from b to a

and γ = γ1 − γ2 is a loop that begins and ends at a
Let D be the enclosed region.

By Green’s Theorem
∫
γ F =

∫∫
D curl F =

∫∫
D 0 = 0

Thus 0 =
∫
γ F =

∫
γ1−γ2 F =

∫
γ1

F−
∫
γ2

F

Hence
∫
γ2

F =
∫
γ1

F



C implies A

C F is PATH INDEPENDENT means
∫
γ1

F =
∫
γ2

F for any
paths γ1 and γ2 from a to b where a and b are any points in
the plane.

A F is CONSERVATIVEmeans F = ∇f for some f : R2 → R1

Idea:
Fix x0 in Rn and let x be arbitrary point in Rn.

Let γ be a curve from x0 to x.
Then

∫
γ F will be a function of x whose gradient is F.

Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.



Example F(x, y) = (3x2 + y, ey + x)
Here F = (F,G) so F (x, y) = 3x2 + y,G(x, y) = ey + x

Hence Fy = 1, Gx = 1 so curl F = Gx − Fy = 0
Let’s build f so its gradient ∇f = (fx, fy) = (3x2 + y, ey + x)

We need fx = 3x2 + y so do ”partial integration with respect to
x”:

f(x) = x3 + yx+ g(y). [ Why is there g(y)? ]
Then fy = 0 + x+ g′(y) which should equal x+ ey so need

g′(y) = ey

which we can get by letting g(y) = ey.
Hence we can choose f(x, y) = x3 + yx+ ey + C.



Let’s build the potential function in a different way using the
theorem with F(x, y) = (3x2 + y, ey + x)

Pick x0 = (0, 0) and let x = (x, y) be an arbitrary point. Choose
the straight line between them as the path γ with parametrization

g(t) = (xt, yt), 0 ≤ t ≤ 1 so g′(t) = (x, y)
Then F(g(t)) = F (xt, yt) = (3x2t2 + yt, eyt + x)t
so F(g(t)) · g′(t) = (3x2t2 + yt, eyt + xt) · (x, y)

= 3x3t2 + xyt+ yeyt + xyt = 3x3t2 + 2xyt+ yeyt

Now
∫
γ F =

∫ 1
0 (3x3t2 + 2xyt+ yeyt) dt

=
[
x3t3 + xyt2 + eyt

]t=1

t=0
= (x3 + xy + ey)− (0 + 0 + 1) = x3 + xy + ey − 1



Theorem Let F be a continuous vector field defined in a
polygonally connected open set D of Rn. If the line integral

∫
γ F

is independent of piecewise smooth path γ from x0 to x in D, then
if f(x) =

∫
γ F, it is true that ∇f = F.



Let g be parametrization of line segment from x to x + tu so
g(t) = x + vu, 0 ≤ v ≤ t and g′(t) = u

f(x + tu)− f(x) =
∫ x+tu

x0
F−

∫ x
x0

F =
∫ x+tu

x F(x + vu)

=
∫ t
0 F(x + vu) · u dv



To find ∂f
∂xj

(x), let u be the unit vector ej = (0, 0, .. . , 1, 0, 0. .

. 0) in the jth direction.

∂f

∂xj
(x) = lim

t→0

f(x + tu)− f(x)

t

= lim
t→0

1

t

∫ t

0
F(x + vu) · u dv

= lim
t→0

1

t

∫ t

0
F(x + vej) · ej dv

But this last expression is the derivative of the integral with
respect to t evaluated at t = 0 which is F · ej = Fj(x) (Using

Fundamental Theorem of Calculus)



Symmetry of Jacobian Matrix for Conservative Vector Field

Let F = (F (x, y), G(x, y)) be a conservative vector field in the
plane which we can recognized by Gx = Fy

F’ =

(
Fx Fy
Gx Gy

)
Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?



Example: F: R3 → R3 by

F (x, y, z) = (yz2 + sin y+ 3x2, xz2 + x cos y+ ez, 2xyz+ yez + 1
z )

F’ =

 6x z2 + cos y 2yz
z2 + cos y −x sin y 2xz + ez

2yz 2xz + ez 2xy + yez − 1
z2


To find f so that ∇f = F:

Step 1: integrate first component of F with respect to x:
f(x, y, z) = yz2x+ x sin y + x3 +G(y, z)

Step 2: Take derivative of trial f respect to y and set equal to
second component of F :

fy = z2x+ x cos y + 0 +Gy(x, y) must = xz2 + x cos y + ez

Need Gy(x, y) = ez so choose G(x, y) = ezy +H(z)
So far, f(x, y, z) = yz2x+ x sin y + x3 + ezy +H(z)

Step 3:Take derivative of trial f respect to z and set equal to
third component of F ;

fz(x, y, z) = 2xyz + 0 + 0 + ezy +H ′(z) must = 2xyz + ezy + 1
z

Need H ′(z) = 1
z so choose H(x) = ln |z|+ C

Thus
f(x, y, z) = f(x, y, z) = yz2x+ x sin y + x3 + ezy + ln |z|+ C



Theorem If F is a conservative vector field on RN = n and is
continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.



Theorem Suppose F is a continuously differentiable vector field on
Rn whose Jacobian matrix is symmetric. Then F is conservative



Integrating Vector Fields Over Surfaces

g(u, v) = [u, v,−2u2 − 3v2] g(u, v) = [u cos v, u sin v, v]



Smooth Curve γ Smooth Surface S

g : I in R1 → Rn g : D in R2 → R3

Length =
∫
I |g
′(t)| dt Area σ(S) =

∫∫
D |gu × gv|dudv

Mass =
∫
I µ(g(t))|g′(t)| dt Mass =

∫∫
D µ dσ

Line Integral: Surface Integral∫
γ F =

∫
I F(g(t)) · g′(t) dt

∫∫
S F =

∫∫
D F(g(u, v)) · (gu × gv)∫∫

S F =
∫∫
S F · dS =

∫∫
S F ·Ndσ

Φ(F, S) =
∫∫
S F is flux of F across S.



Surface Integral
Let g be a function from an interval [t0, t1] into Rn with image γ

and mu density at g(t).
Then Mass of Wire =

∫ t1
t0
µ(t)|g′(t)| dt

If µ ≡ 1, then mass = length of curve
∫ t1
t0
|g′(t)| dt

Generalize To Surfaces
Let D be region in plane and g : D → R3 with

g(u, v) = (g1, g2, g3) where each component function gi is
continuously differentiable.

There are two natural tangent vectors: gu = ∂g
∂u and gv = ∂g

∂v ,
These determine a tangent plane.

S is a Smooth Surface if these two vectors are linearly
independent.

Note that ∂g
∂u ×

∂g
∂v is normal to the plane with

| ∂g∂u ×
∂g
∂v | = |

∂g
∂u ||

∂g
∂v | sin θ

= Area of Parallelogram Spanned by the Vectors



sin θ = h
|b| so h = |b| sin θ

Area of Parallelogram = (Base)(Height) = |a||b| sin θ
a = gu,b = gv

|gu × gv| = |gu||gv| sin θ



Surface Area
σ(S) =

∫∫
D |

∂g
∂u ×

∂g
∂v | dudv =

∫∫
D |gu × gv| dudv

If µ(g(u, v)) is density, then mass =∫∫
D µ dσ =

∫∫
D µ(g(u, v))|gu × gv| dudv

Plotting Parametrized Surface in Maple:
plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π



Area of a Spiral Ramp
g(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π
gu = (cos v, sin v, 0), gv = (−u sin v, u cos v, 1)

gu × gv = det

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣
=

(∣∣∣∣ sin v 0
u cos v 1

∣∣∣∣ ,− ∣∣∣∣ cos v 0
−u sin v 1

∣∣∣∣ , ∣∣∣∣ cos v sin v
−u sin v u cos v

∣∣∣∣)
= (sin v,− cos v, u)

Then |gu × gv| =
√

sin2 v + cos2 v + u2 =
√

1 + u2

Area =
∫ v=3π
v=0

∫ 1
u=0

√
1 + u2 du dv

If density is µ(x) = u, then
Mass =∫ v=3π

v=0

∫ u=1
u=0 u(1 + u2)1/2 du dv =

∫ v=3π
v=0

[
1
3(1 + u2)3/2

]1
0
dv

=
∫ v=3π
v=0

1
3 [23/2 − 13/2] dv = 3π 1

3 [23/2 − 1] = π[23/2 − 1]




