MATH 223: Multivariable Calculus

Class 33: December 5, 2022

KORKARYKERKER POLO

Notes on Assignment 30 Assignment 31 Conservative Vector Fields Surface Integrals

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Announcements Independent Projects Due Friday

Today

Proof of Green's Theorem Conservative Vector Fields Surface Integrals

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Green's Theorem in the Plane

 \int D curl $\mathbf{F} = \int$ γ F D is bounded plane region. $C = \gamma$ is piecewise smooth boundary of D F and G are continuously differentiable functions defined on D Then $\int \int (G_x - F_y) dx dy =$ γ (F, G)

wher[e](#page-2-0) γ is parametrized so it is traced once [with](#page-0-0) D [on the left.](#page-0-0)

 299

Proof of Green's Theorem in an Elementary Case Case : Boundary of D is made up of the graphs of two functions defined on interval $[a, b]$.

KORKARYKERKER POLO

Need to show $\int\!\!\int_D [G_x-Fy]=\int_\gamma {\bf F}=\int_\gamma [(F,0)+(0,G)]$ Will show $\int\!\!\int_D -F y = \int_\gamma (F, 0)$

We tackle the line integral first. Start with γ_1

We can parametrize γ_1 by a function $g(t) = (t, \phi(t))$ for $a \le t \le b$ Then $g'(t) = (1, \phi'_1(t))$ Now $(F, 0) \cdot g'(t) = (F, 0) \cdot (1, \phi'_1(t)) = F = F(t, \phi_1(t))$ so $\int_{\gamma_1}(F,0)=\int_a^b F(t,\phi_1(t))\,dt$

Now we take up γ_2

Consider Parametrization of γ_2 as $g(t) = (t, \phi_2(t)), a \le t \le b$. This would actually traces out γ_2 in the opposite direction. It is the parametrization of $-\gamma_2$ Again we have $g'(t) = (1, \phi'_2)$ and $(F, 0) \cdot g'(t) = F(t, \phi_2(t))$ so $\int_{-\gamma_2} (F, 0) = \int_a^b F(t, \phi_2(t)).$ Thus $\int_{-\gamma_2} (F, 0) = - \int_{\gamma_2} = - \int_a^b F(t, \phi_2(t)).$ Finally, $\int_{\gamma}(F, 0) = \int_{\gamma_1}(F, 0) + \int_{\gamma_2}(F, 0)$ $=\int_{a}^{b} F(t, \phi_1(t)) dt - \int_{a}^{b} F(t, \phi_2(t)) dt$ Z γ $(F, 0) = \int^b$ a $F(t, \phi_1(t)) - F(t, \phi_2(t)) dt$

> イロト イ押 トイヨ トイヨ トー Ω

Goal: Show $\int\!\!\int_D -F y = \int_\gamma (F, 0)$ So far: $\int_{\gamma}(F,0) = \int_a^b F(t,\phi_1(t)) - F(t,\phi_2(t))\ dt$ Now turn to the curl part:

$$
\iint_D -F_y = -\iint_D F_y = \int_{x=a}^{x=b} \int_{y=\phi_1(x)}^{y=\phi_2(x)} -F_y(x, y) dy dx
$$

= $-\int_a^b [F(x, \phi_2(x)) - F(x, \phi_1(x))] dx$
= $-\int_a^b [F(t, \phi_2(t)) - F(t, \phi_1(t))] dt$ (let $t = x$)
= $\int_a^b [F(t, \phi_1(t)) - F(t, \phi_2(t))] dt$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Conservative Vector Fields

F is continuously differentiable vector field in the plane $\textsf{\textbf{F}}:\mathbb{R}^2\rightarrow\mathbb{R}^2$ with $\textsf{\textbf{F}}(x,y)=(F(x,y),G(x,y))$ where F and G are each real-valued functions.

Here curl **F** is a real-valued function $G_x - F_y$ Green's Theorem: \int_D curl $\, {\mathsf F} = \int_\gamma {\mathsf F}$

Three Important Properties of Vector Fields

A F is CONSERVATIVE means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$

- **B F is IRROTATIONAL** means curl $F = 0$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from a to **b** where a and **b** are any points in the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT

KORKAR KERKER SAGA

A implies B

A F is CONSERVATIVE means $F = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$ **B F is IRROTATIONAL** means curl $F = 0$

Suppose F is Conservative Then $(F, G) = \mathbf{F} = \nabla f = (f_x, f_y)$ so $f_x = F$ and $f_y = G$ Thus $G_x = f_{ux}$ and $F_y = f_{xxy}$ so curl $\mathbf{F} = G_x - F_y = f_{yx} - f_{xy} = 0$

by equality of mixed partials.

KORKARYKERKER POLO

B implies C will follow from Green's Theorem

- **B F** is **IRROTATIONAL** means curl $F = 0$
- **C F** is PATH INDEPENDENT means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from a to **b** where a and **b** are any points in the plane.
- Let a and **b** are any points in the plane and γ_1 and γ_2 two paths from **a** to **b**. Then $-\gamma_1$ runs from **b** to **a**

and $\gamma = \gamma_1 - \gamma_2$ is a loop that begins and ends at **a** Let D be the enclosed region.

By Green's Theorem $\int_\gamma \mathsf{F} = \int\int_D$ curl $\mathsf{F} = \int\int_D 0 = 0$ Thus $0=\int_{\gamma}{\bf F}=\int_{\gamma_1-\gamma_2}{\bf F}=\int_{\gamma_1}{\bf F}-\int_{\gamma_2}{\bf F}$ Hence $\int_{\gamma_2} \mathbf{F} = \int_{\gamma_1} \mathbf{F}$ $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 Ω

C implies A

- **C F** is PATH INDEPENDENT means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from a to **b** where a and **b** are any points in the plane.
- A F is CONSERVATIVE means $F = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$

Idea:

Fix \mathbf{x}_0 in \mathbb{R}^n and let \mathbf{x} be arbitrary point in \mathbb{R}^n . Let γ be a curve from x_0 to x. Then $\int_\gamma \mathsf{F}$ will be a function of **x** whose gradient is $\mathsf{F}.$

Theorem Let F be a continuous vector field defined in a polygonally connected open set D of $\mathbb{R}^n.$ If the line integral \int_{γ} $\boldsymbol{\mathsf{F}}$ is independent of piecewise smooth path γ from x_0 to x in D, then if $f(\mathsf{x}) = \int_\gamma \, \mathsf{F}$, it is true that $\nabla f = \mathsf{F}.$

Example $\mathbf{F}(x,y) = (3x^2 + y, e^y + x)$ Here $\textsf{\textbf{F}}=(\overline{F,G})$ so $F(x,y)=3x^2+y,G(x,y)=e^y+x$ Hence $F_u = 1, G_x = 1$ so curl $\mathbf{F} = G_x - F_u = 0$ Let's build f so its gradient $\nabla f = (f_x, f_y) = (3x^2 + y, e^y + x)$ We need $f_x = 3x^2 + y$ so do "partial integration with respect to r " \cdot $f(x) = x^3 + yx + g(y)$. [Why is there $g(y)$?] Then $f_y = 0 + x + g'(y)$ which should equal $x + e^y$ so need $g'(y) = e^y$ which we can get by letting $g(y) = e^y$. Hence we can choose $f(x,y) = x^3 + yx + e^y + C$.

ALLARATIVES E COO

Let's build the potential function in a different way using the theorem with $\mathsf{F}(x,y) = (3x^2+y,e^y+x)$ Pick $\mathbf{x}_0 = (0, 0)$ and let $\mathbf{x} = (x, y)$ be an arbitrary point. Choose the straight line between them as the path γ with parametrization $g(t) = (xt, yt), 0 \le t \le 1$ so $g'(t) = (x, y)$ Then $\mathbf{F}(g(t)) = F(xt, yt) = (3x^2t^2 + yt, e^{yt} + x)t$ so $\mathbf{F}(g(t)) \cdot g'(t) = (3x^2t^2 + yt, e^{yt} + xt) \cdot (x, y)$ $= 3x^3t^2 + xyt + ye^{yt} + xyt = 3x^3t^2 + 2xyt + ye^{yt}$ Now $\int_{\gamma} \mathbf{F} = \int_0^1 (3x^3t^2 + 2xyt + ye^{yt}) dt$ $=\left[x^3t^3+xyt^2+e^{yt}\right]_{t=0}^{t=1}$ $=(x^3+xy+e^y)-(0+0+1)=x^3+xy+e^y-1$

ALL AND A REAGENE MORE

Theorem Let F be a continuous vector field defined in a polygonally connected open set D of \mathbb{R}^n . If the line integral \int_{γ} **F** is independent of piecewise smooth path γ from x_0 to x in D, then if $f(\mathsf{x}) = \int_\gamma \, \mathsf{F}$, it is true that $\nabla f = \mathsf{F}.$

Let g be parametrization of line segment from x to $x + tu$ so $g(t) = \mathbf{x} + v\mathbf{u}, 0 \le v \le t$ and $g'(t) = \mathbf{u}$

$$
f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x}) = \int_{\mathbf{x}_0}^{\mathbf{x} + t\mathbf{u}} \mathbf{F} - \int_{\mathbf{x}_0}^{\mathbf{x}} \mathbf{F} = \int_{\mathbf{x}}^{\mathbf{x} + t\mathbf{u}} \mathbf{F}(\mathbf{x} + v\mathbf{u})
$$

$$
= \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

To find $\frac{\partial f}{\partial x_j}(\mathsf{x})$, let u be the unit vector $\mathsf{e}_j = (0, \, 0, \, \ldots \, , \, 1, \, 0, \, 0, \, \ldots)$. 0) in the j th direction.

$$
\frac{\partial f}{\partial x_j}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t}
$$

$$
= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv
$$

$$
= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{e}_j) \cdot \mathbf{e}_j \, dv
$$

But this last expression is the derivative of the integral with respect to t evaluated at $t = 0$ which is $\mathbf{F} \cdot \mathbf{e}_i = F_i(\mathbf{x})$ (Using Fundamental Theorem of Calculus)

Symmetry of Jacobian Matrix for Conservative Vector Field

Let
$$
\mathbf{F} = (F(x, y), G(x, y))
$$
 be a conservative vector field in the
plane which we can recognized by $G_x = F_y$

$$
\mathbf{F'} = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix}
$$
Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example: $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ by

$$
F(x, y, z) = (yz^{2} + \sin y + 3x^{2}, xz^{2} + x \cos y + e^{z}, 2xyz + ye^{z} + \frac{1}{z})
$$

$$
\mathbf{F'} = \begin{pmatrix} 6x & z^{2} + \cos y & 2yz \\ z^{2} + \cos y & -x \sin y & 2xz + e^{z} \\ 2yz & 2xz + e^{z} & 2xy + ye^{z} - \frac{1}{z^{2}} \end{pmatrix}
$$

To find f so that $\nabla f = \mathbf{F}$:

Step 1: integrate first component of **F** with respect to x : $f(x, y, z) = yz^{2}x + x \sin y + x^{3} + G(y, z)$

Step 2: Take derivative of trial f respect to y and set equal to second component of F :

$$
f_y = z^2x + x\cos y + 0 + G_y(x, y)
$$
 must = $xz^2 + x\cos y + e^z$
\nNeed $G_y(x, y) = e^z$ so choose $G(x, y) = e^zy + H(z)$
\nSo far, $f(x, y, z) = yz^2x + x\sin y + x^3 + e^zy + H(z)$

Step 3: Take derivative of trial f respect to z and set equal to third component of F ;

$$
f_z(x, y, z) = 2xyz + 0 + 0 + e^z y + H'(z) \text{ must } = 2xyz + e^z y + \frac{1}{z}
$$

\nNeed $H'(z) = \frac{1}{z}$ so choose $H(x) = \ln |z| + C$
\nThus
\n
$$
f(x, y, z) = f(x, y, z) = yz^2x + x \sin y + x^3 + e^z y + \ln |z| + C
$$

<u>Theorem</u> If **F** is a conservative vector field on $\mathbb{R}^N = n$ and is continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.

KO K K Ø K K E K K E K V K K K K K K K K K

Theorem Suppose F is a continuously differentiable vector field on \mathbb{R}^n whose Jacobian matrix is symmetric. Then **F** is conservative

KO K K Ø K K E K K E K V K K K K K K K K K

Integrating Vector Fields Over Surfaces

 $g(u, v) = [u, v, -2u^2 - 3v^2]$ $g(u, v) = [u \cos v, u \sin v, v]$

Kロト K個 K K ミト K ミト 「 ミー の R (^

Surface Integral Let g be a function from an interval $[t_0,t_1]$ into \mathbb{R}^n with image γ and mu density at $q(t)$. Then Mass of Wire $= \int_{t_0}^{t_1} \mu(t) |g'(t)| dt$ If $\mu \equiv 1$, then mass = length of curve $\int_{t_0}^{t_1} |g'(t)| dt$ Generalize To Surfaces Let D be region in plane and $g: D \to \mathbb{R}^3$ with $g(u,v) = (g_1,g_2,g_3)$ where each component function g_i is continuously differentiable.

There are two natural tangent vectors: $g_u=\frac{\partial g}{\partial u}$ and $g_v=\frac{\partial g}{\partial v}$, These determine a tangent plane.

 S is a **Smooth Surface** if these two vectors are linearly independent.

Note that $\frac{\partial g}{\partial \mu} \times \frac{\partial g}{\partial \nu}$ is normal to the plane with $\left|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right| = \left|\frac{\partial g}{\partial u}\right| \left|\frac{\partial g}{\partial v}\right| \sin \theta$ $=$ Area of Parallelogram Spanned by the Vectors

KORKAR KERKER SAGA

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Surface Area
$\sigma(S) = \iint_D \left \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right dudv = \iint_D g_u \times g_v dudv$
If $\mu(g(u, v))$ is density, then mass =
$\iint_D \mu d\sigma = \iint_D \mu(g(u, v)) g_u \times g_v dudv$
Plotting Parametrized Surface in Maple:
$plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)$

K ロ K K d K K B K K B K X A K K K G K C K

Area of a Spiral Ramp $g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Area of a Spiral Ramp
\n
$$
g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi
$$
\n
$$
g_u = (\cos v, \sin v, 0), g_v = (-u \sin v, u \cos v, 1)
$$
\n
$$
\begin{vmatrix}\n\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{c}_0 & \mathbf{k} & \mathbf{j} & \mathbf{k} \\
-\mathbf{k} & \cos v & \sin v & 0 \\
-\mathbf{l} & \sin v & u \cos v & 1\n\end{vmatrix}
$$
\n
$$
= \left(\begin{vmatrix} \sin v & 0 \\ u \cos v & 1 \end{vmatrix}, - \begin{vmatrix} \cos v & 0 \\ -u \sin v & 1 \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u \sin v & u \cos v \end{vmatrix} \right)
$$
\n
$$
= (\sin v, -\cos v, u)
$$
\nThen $|g_u \times g_v| = \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2}$
\nArea $= \int_{v=0}^{v=3\pi} \int_{u=0}^{1} \sqrt{1 + u^2} du dv$
\nIf density is $\mu(\mathbf{x}) = u$, then
\nMass $=$
\n $\int_{v=0}^{v=3\pi} \int_{u=0}^{u=1} u(1 + u^2)^{1/2} du dv = \int_{v=0}^{v=3\pi} \left[\frac{1}{3} (1 + u^2)^{3/2} \right]_0^1 dv$
\n $= \int_{v=0}^{v=3\pi} \frac{1}{3} [2^{3/2} - 1^{3/2}] dv = 3\pi \frac{1}{3} [2^{3/2} - 1] = \pi [2^{3/2} - 1]$

K ロ K K d K K B K K B K X A K K K G K C K

K ロ K K d K K B K K B K X A K K K G K C K