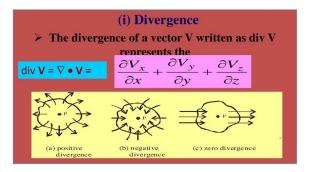
MATH 223: Multivariable Calculus

Divergence, Curl and Gradient Operations



Class 31: November 30, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notes on Assignment 28 Assignment 29 Divergence and Curl

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Announcements

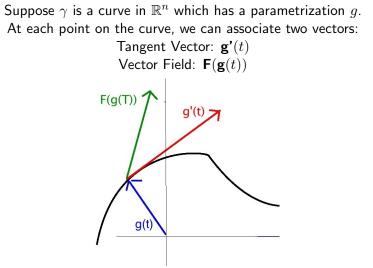
Exam 3:Tonight at 7 PM One Page of Notes

Today

Flow Lines Begin Chapter 8: Vector Field Theory Divergence and Curl: Measures of Rates of Change of Vector Fields

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Flow Lines



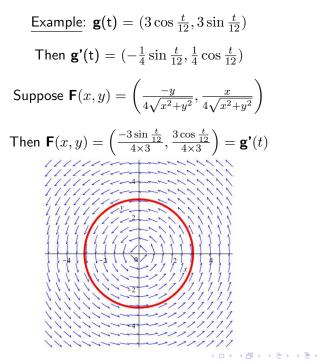
If the two vectors coincide, then γ is called a flow line for **F**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hard Problem: Given **F**, find flow lines (Central Question in Differential Equations)

Easy Problem: Given **g** and **F**, check if γ is a flow line for **F**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



Flow Lines and Differential Equations

Star with a system of differential equations

$$\frac{dx}{dt} = (2-y)(x-y) = f(x,y)$$
$$\frac{dy}{dt} = (1+x)(x+y) = g(x,y)$$

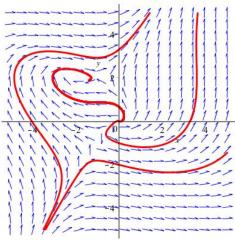
Can write as a single equation: $\frac{dy}{dx} = \frac{(1+x)(x-y)}{(2-y)(x-y)} = \frac{g(x,y)}{f(x,y)}$ Observe:

- 1. Solution of the equation is a curve in the (x, y)-plane
- 2. As time goes forward, point moves along the curve in accordance to the equation
- 3. $\mathbf{F}(x,y) = (f(x,y), g(x,y))$ is a vector field.
- 4. At each point on curve, direction of motion is given by the vector field

(日本本語を本書を本書を入事)の(で)

- 5. The vector field is tangent to the curve
- 6. The curve is tangent to the vector field

<u>Definition</u>: A **flow line** of a vector field \mathbf{F} is a differentiable function \mathbf{g} such that the velocity vector \mathbf{g}' at each point coincides with the field vector $\mathbf{F}(\mathbf{g})$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Divergence of a Vector Field

<u>Definition</u> div \mathbf{F} = trace of \mathbf{F}' of the Jacobi Matrix <u>Example</u> $\mathbf{F} \colon \mathbb{R}^2 \to \mathbb{R}^2$ by $\mathbf{F}(x, y) = (2x - y, x - 3y)$ $\mathbf{F} = \begin{pmatrix} 2 & -1 \\ 1 & -3 \end{pmatrix}$ implies div $\mathbf{F} = 2 - 3 = -1$

Example: F:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 by $\mathbf{F}(x, y, z) = (xy, yz, zx)$
 $\mathbf{F'} = \begin{pmatrix} y & -- & -- \\ -- & z & -- \\ -- & -- & x \end{pmatrix}$ implies div $\mathbf{F} = y + z + x$

Example: F: $\mathbb{R}^3 \to \mathbb{R}^3$ by $\mathbf{F}(x, y, z) = (yz, xz, xy)$

Alternate Notation:
$$yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$

 $\mathbf{F'} = \begin{pmatrix} 0 & z & y \\ z & 0 & y \\ y & z & 0 \end{pmatrix}$ implies div $\mathbf{F} = 0$
 $\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}$
 $\mathbf{F'} = \begin{array}{c} F1 \\ F2 \\ F3 \end{pmatrix} \begin{pmatrix} 0 & z & y \\ z & 0 & y \\ y & z & 0 \end{pmatrix}$ implies div $\mathbf{F} = 0$

In general, div F is a real -valued function of n variables.

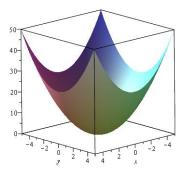
Notes 1. Gauss's Theorem: $\int_R \mbox{ div } {\bf F} \ dV = \int_{\partial R} {\bf F} \cdot d{\bf S}$

- div F gives expansion rate of fluid at point x div F > 0 means fluid is expanding, getting less dense div F < 0 means fluid is contracting, becomes more dense
- 3. Alternate Notation; $\mathbf{F} = (F_1, F_2, F_3), \nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ Then div $\mathbf{F} = \mathbf{F} \cdot \nabla$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

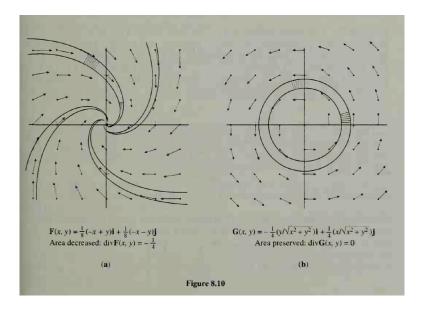
Example

$$\begin{split} \mathbf{F}(x,y,z) &= (xy^2 + z\ln(1+y^2), \sin(xz) - zy, x^2z + \arctan y + e^{x^2}) \\ & \text{div } \mathbf{F} = y^2 - z + x^2 \\ & \text{so div } \mathbf{F} > 0 \text{ if } x^2 + y^2 > z \\ & z = x^2 + y^2 \text{ is equation of elliptic paraboloid.} \end{split}$$



Divergence is positive on the outside, negative on the inside.

・ロト・「四ト・「田下・「田下・(日下



<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Curl of a Vector Field

Curl measures local tendency of a vector field and its flow lines to circulate around some axis. The curl of a vector field is itself a vector field. Setting; $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is our vector field $\mathbf{F} = (F_1, F_2, F_3)$ so $\mathbf{F}(x, yz) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$ Formal Definition: curl $\mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)$ Mnemonic Device: curl $\mathbf{F} = \det \begin{pmatrix} \mathbf{I} & \mathbf{J} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F & F & F \end{pmatrix}$ Expand along first row: $\operatorname{curl} \mathbf{F} = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{k}$

$$\begin{aligned} \operatorname{curl} \, \mathbf{F} &= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \\ & \underline{\text{Example:}} \, \mathbf{F}(x, y, z) = (xyz, y - 3z, 2y) \\ \operatorname{curl} \, \mathbf{F} &= ((2y)_y - (-3z)_z, (xyz)_z - (2y)_x, (y - 3z)_x - (xyz)_y)) \\ &= (2 - (-3), xy - 0, 0 - xz) = (5, xy, -xz) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Scalar Curl for Vector Fields in Plane

$$\begin{split} \mathbf{F} &= (F,G,0) \text{ where } F(x,y) \text{ and } G(x,y) \text{ are functions only of } x \text{ and } y. \\ & \text{Then curl } \mathbf{F} = (0,0,G_x-F_y) \\ \text{Note: Curl and Conservative Vector Field} \\ \text{Suppose } \mathbf{F} &= (F,G,0) \text{ is gradient field with } \mathbf{F} = \nabla f. \\ & \text{Then } F = f_x \text{ and } G = f_y \\ \text{In this case, Curl } \mathbf{F} &= (0,0,f_{yx}-f_{xy}) = (0,0,0) \\ \text{by Clairault's Theorem on Equality of Mixed Partials.} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Green's Theorem in the Plane

 $\iint_{D} \operatorname{curl} \mathbf{F} = \int_{C} \mathbf{F}$ D is bounded plane region. $C = \gamma$ is piecewise smooth boundary of D F and G are continuously differentiable functions defined on DThen $\int \int (G_x - F_y) dx dy = \int_{\Omega} F dx + Gy$

where γ is parametrized so it is traced once with D on the left.

Application of Green's Theorem in the Plane $\iint_{D} \operatorname{curl} \mathbf{F} = \int_{\infty} \mathbf{F}$ Example $\mathbf{F}(x, y) = (0, x)$ implies $curl\mathbf{F} = 1 - 0 = 1$ Hence $\iint_D \operatorname{curl} \mathbf{F} = \iint_D 1 = \text{ area of } D$ Green's Theorem enables us to find the area of a planar region if we can develop a parametrization of its boundary. Example Consider the unit disk D of radius r centered at origin. Let $q(t) = (r \cos t, r \sin t), 0 < t < 2\pi$ So $q'(t) = (r \sin t, r \cos t)$ and $\mathbf{F}(q(t)) = (0, r \cos t)$ Then $\mathbf{F}(q(t)) \cdot q'(t) = r^2 \cos^2 t \, dt$ Thus area of $D = \iint_D 1 = \iint_D \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F} = \int_0^{2\pi} r^2 \cos^2 t \, dt$ $\int_{0}^{2\pi} r^{2} \cos^{2} t \, dt = r^{2} \int_{0}^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \frac{r^{2}}{2} \left[t + \frac{1}{2} \sin 2t \right]_{0}^{2\pi} \pi r^{2}$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ の�?

Using Green's Theorem

(1) Compute $\iint_D \operatorname{curl} \mathbf{F}$ by using $\int_{\gamma} \mathbf{F}$

(2) Compute $\int_{\gamma} \mathbf{F}$ by using $\iint_D \operatorname{curl} \mathbf{F}$

Curl of a Vector Field

Curl measures local tendency of a vector field and its flow lines to circulate around some axis. The curl of a vector field is itself a vector field. Setting; $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is our vector field $\mathbf{F} = (F_1, F_2, F_3)$ so $\mathbf{F}(x, yz) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$ Formal Definition: curl $\mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)$ Mnemonic Device: curl $\mathbf{F} = \det \begin{pmatrix} \mathbf{I} & \mathbf{J} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F & F & F \end{pmatrix}$ Expand along first row: $\operatorname{curl} \mathbf{F} = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ F_{c} & F_{c} \end{vmatrix} \mathbf{k}$

Scalar Curl for Vector Fields in Plane

 $\mathbf{F} = (F, G, 0)$ where F(x, y) and G(x, y) are functions only of x and

$$y.$$

Then curl ${f F}=(0,0,G_x-F_y)$

Note: Curl and Conservative Vector Field Suppose $\mathbf{F} = (F, G, 0)$ is gradient field with $\mathbf{F} = \nabla f$. Then $F = f_x$ and $G = f_y$ In this case, Curl $\mathbf{F} = (0, 0, f_{yx} - f_{xy}) = (0, 0, 0)$ by Clairault's Theorem on Equality of Mixed Partials.

Green's Theorem in the Plane

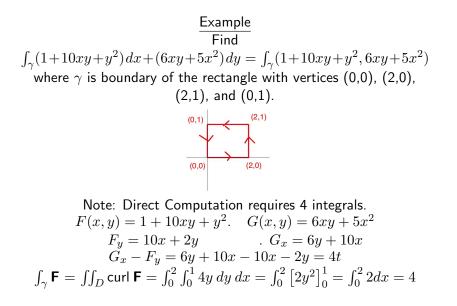
 $\iint_{D} \operatorname{curl} \mathbf{F} = \int_{C} \mathbf{F}$ D is bounded plane region. $C = \gamma$ is piecewise smooth boundary of D F and G are continuously differentiable functions defined on DThen $\int \int (G_x - F_y) dx dy = \int_{\Omega} F dx + Gy$

where γ is parametrized so it is traced once with D on the left.

Using Green's Theorem

(1) Compute $\iint_D \operatorname{curl} \mathbf{F}$ by using $\int_{\gamma} \mathbf{F}$

(2) Compute $\int_{\gamma} \mathbf{F}$ by using $\iint_D \operatorname{curl} \mathbf{F}$



- * ロ * * 御 * * ミ * ミ * 三 * のへで

George Green 1793 – 1841

AN ESSAY

APPLICATION

MATHEMATICAL ANALYSIS TO THE THEORIES OF ELECTRICITY AND MAGNETISM. Mikhail Ostrogradsky 1801 – 1861

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ