
MATH 223: Multivariable Calculus

Class 29: November 18, 2022



Notes on Assignment 26
Assignment 27

Weighted Curves and Surfaces of Revolution



Wednesday, November 30
7 PM –?

Here
You May Bring One Sheet (Two-Sided) of Notes



Today:
Conservative Vector Fields and Conservation of Energy

Weighted Curves and Surfaces of Revolution

Monday, November 26: Normal Vectors and Curvature
Following Wednesday: Flow Lines, Divergence and Curl



INTEGRATION OF VECTOR FIELDS F : Rn → Rn

F(~x) = (F1(~x), F2(~x), .., Fn(~x)

What is Meaning of
∫
D F?

For Now: D is a one-dimensional set in Rn
D is a curve parametrized by a function g : R1 → Rn on an

interval a ≤ t ≤ b
We denote the image of g by γ

Definition The Line Integral of F over γ is

∫
γ

F · d~x =

∫ b

a
F(g(t)) · g′(t) dt



Theorem The value of the line
integral

∫
γ F is independent of

the parametrization of γ but in
general is dependent on the

curve itself.



For some vector fields, the line
integral

∫
γ F depends only on

the endpoints of the curve.
In particular, this is true of F is a

gradient field; that is,

F = ∇f

for some real-valued function f .



Theorem (The Fundamental
Theorem of Calculus for Line
Integrals. Let f : Rn → R1 be

continuously differentiable and let
F = ∇f and suppose γ : R1 → Rn is
a continuous curve with endpoints ~a

and ~b.
Then

∫
γ F =

∫
γ∇f = f (~b)− f (~a).



If F = ∇f for some f , then we call F
a Conservative Vector Field

or an Exact Vector Field

and f is called a Potential of F

The function P (~x) = −f(~x) is the Potential Energy of the field
F.

Conservative Vector Field: F(x, y) = (2xy, x2 + 2y)
Nonconservative Example F(x, y) = (x, x+ 1)



Application: Conservation of Energy

Suppose g(t) represents the position of an object of varying mass
m(t) in space at time t.

The velocity vector of the object is v = g′(t).
The Force acting on the object at position g(t) is

F(g(t)) = [m(t)v(t)]′ = m′(t)v(t) +m(t)v′(t)

Then

F(g(t)) · g′(t) = F(g(t)) · v(t)
=
[
m′(t)v(t) +m(t)v′(t)

]
· v(t)

= m′(t)v(t) · v(t) +m(t)v′(t) · v(t)
= m′(t)s2(t) +m(t)s′(t)s(t)

where s(t) = |v(t)| = speed at time t.



To Show: s′(t)s(t) = v′(t) · v(t)

Start with s2(t) = |v(t)|2 = v(t) · v(t)

Differentiate each side with respect to t:

2s(t)s′(t) = v′(t) · v(t) + v(t) · v′(t) = 2v′(t) · v(t)

Thus s′(t)s(t) = v′(t) · v(t)
and

F(g(t)) · g′(t) = m′(t)s2(t) +m(t)s′(t)s(t)



Application: Conservation of Energy

(a) F(g(t)) · g′(t) = m′(t)s2(t) +m(t)s′(t)s(t)
We’ll use the scalar v for the scalar s

so F(g(t)) · g′(t) = m′(t)v2(t) +m(t)v′(t)v(t)

(b) m(t) = Constant implies m′ = 0
so F(g(t)) · g′(t) = mv(t)v′(t)

∫ b
a mv(t)v

′(t) dt = mv(t)2

2

∣∣∣∣t=b
t=a



Application: Conservation of Energy
Suppose F is a force field which moves an object of mass m

from ~a to ~b along curve γ.
Let g be a parametrization of curve γ and v(t) = g′(t).

Then the work done in moving the object is

1

2
m|v(tb)|2 −

1

2
m|v(ta)|2 ( Change in Kinetic Energy)

If F is a conservative field, then we can also compute work done by∫
γ F = f(~b)− f(~a) = p(~a)− p(~b) = Change in Potential Energy

Equating the two expressions for work, we have
1
2m|v(tb)|

2 − 1
2m|v(ta)|

2 = p(~a)− p(~b)
p(~b) + 1

2m|v(tb)|
2 = p(~a) + 1

2m|v(ta)|
2

where ~a and ~b are any 2 points
So Sum of Potential and Kinetic Energy is Constant

Law of Conservation of Total Energy



Arc Length
Let g : R1 → Rn be defined on a ≤ t ≤ b. Then the image of g is

a curve γ with length L(γ) =
∫ b
a |g
′(t)| dt.

Example: Cycloid: g(t) = (t− sin t, 1− cos t), 0 ≤ t ≤ 2π

g′(t) = (1− cos t, sin t)

|g′(t)| =
√

(1− cos t)2 + sin2 t =
√

1− 2 cos t+ cos2 t+ sin2 t =√
2− 2 cos t =

√
2(1− cos t) =

√
2(2 sin2(t/2) = 2 sin(t/2)

L(γ) =
∫ 2π
0 2 sin(t/2) dt = −4 cos(t/2)

∣∣∣∣2π
0

= 8



Other Formulations

L(γ) =
∫ b
a |g
′(t)| dt

If a curve is given by y = f(x), a ≤ x ≤ b, then let g(t) = (t, f(t))
so

|g′(t)| = |(1, f ′(t)| =
√
1 + [f ′(t)]2

If g(t) = (h1(t), h2(t)|, then |g′(t)| =
√
[h′1]

2 + [h′2]
2.



Arc Length Parametrization
Let γ be a curve parametrized by g(t) for t0 ≤ t ≤ t1

With ~x(t) = g(t),~x is position at time t.
Then arc length function is s = s(t) =

∫ t
t0
|g′(t)| dt =

∫ t
t0
|x(t)| dt

If |g′(t)| = 1 for all t, then we say the curve is parametrized by
arc length

Moving along the curve with uniform speed of 1 means that at
time s we are at a point s units along the curve.



Example 1: Unit Circle: g(t) = (cos t, sin t), 0 ≤ t ≤ 2π

Example 2 Helix: g(t) =
(

a cos t√
a2+b2

, a sin t√
a2+b2

, bt√
a2+b2

)
.

Then g′(t) =
(
−a sin t√
a2+b2

, a cos t√
a2+b2

, b√
a2+b2

)
.

and |g′(t)| =
√

a2 sin2 t+a2 cos2 t+b2

a2+b2
=
√

a2+b2

a2+b2
= 1



Mass of a Weighted Curve
Density (µ) is mass per unit length

Total Mass ∼
∑
µ(point)× Length of short piece of curve

Total Mass =
∫
µ(g(t))|g′(t)| dt



Total Mass :
∫
µ(g(t))|g′(t)| dt

Example Spacecurve g(t) = (sin t, cos t, t2), 0 ≤ t ≤ 2π
Here g′(t) = (cos t,− sin t, 2t)

so |g′(t)| =
√

cos2 t+ sin2 t+ 4t2 =
√
1 + 4t2

Suppose µ(x, y, z) = x2 + y2 +
√
z − 1

Then µ(g(t)) = µ(sin t, cos t, t2) = cos2+sin2 t+
√
t2 − 1

= 1 + t− 1 = t
Thus Mass =

∫ 2π
0 t
√
1 + 4t2 dt

= 1
12(1 + 4t2)3/2

∣∣∣∣2π
0

= 1
12

[
(1 + 16π2)3/2 − 1

]



Surface of Revolution
S is a surface in R3 obtained by rotating a plane curve about a

straight line in the plane.
Simplest Case: Rotate y = f(x) about x-axis.

Volume =
∫ b
a π [f(x)]

2 dx

Surface Area =
∫ b
a 2π

√
1 + [f(x)]2 dx



Volume =
∫ b
a π [f(x)]

2 dx

Surface Area =
∫ b
a 2π

√
1 + [f(x)]2 dx

Suppose curve has parametrization g : R1 → R2, t0 ≤ t ≤ t1
g(t) = (x(t), y(t)) with g(t0) = (a, f(a)) and g(t1) = (b, f(b)).

Volume =
∫ t1
t0
π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt



Example Revolve Semicircle of radius r about horizontal axis.

g(t) = (r cos t, r sin t), 0 ≤ t ≤ π
Volume =

∫ t1
t0
π [y(t)]2 x′(t) dt

Surface Area =
∫ t1
t0

2πy(t)|g′(t)| dt
Surface Area =

∫ π
t0
r22π sin t dt

= −2πr2 cos t
∣∣∣∣π
0

= −2r2π(−1− 1) = 4πr2.

Volume =
∫ π
0 π(r sin t)

2r sin t dt = 4
3πr

3




