MATH 223: Multivariable Calculus

Class 29: November 18, 2022

KORK ERKER ADAM ADA

Notes on Assignment 26 Assignment 27 Weighted Curves and Surfaces of Revolution

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Here

You May Bring One Sheet (Two-Sided) of Notes

KORK EXTERNE PROVIDE

Today:

Conservative Vector Fields and Conservation of Energy Weighted Curves and Surfaces of Revolution

Monday, November 26: Normal Vectors and Curvature Following Wednesday: Flow Lines, Divergence and Curl

KORK ERKER ADAM ADA

INTEGRATION OF VECTOR FIELDS $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$

 $\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$

What is Meaning of $\int_{\mathcal{D}}\textsf{F}?$

For Now: D is a one-dimensional set in \mathbb{R}^n $\mathcal D$ is a curve parametrized by a function $g:\mathbb R^1\to \mathbb R^n$ on an interval $a \leq t \leq b$ We denote the **image** of g by γ Definition The Line Integral of F over γ is

$$
\int_{\gamma} \mathbf{F} \cdot d\vec{x} = \int_{a}^{b} \mathbf{F}(g(t)) \cdot g'(t) dt
$$

KORKARYKERKER OQO

Theorem The value of the line integral $\int_\gamma \mathsf{F}$ is independent of the parametrization of γ but in general is dependent on the curve itself.

KORKAR KERKER SAGA

For some vector fields, the line integral \int_{γ} F depends only on the endpoints of the curve. In particular, this is true of $\mathbf F$ is a gradient field; that is, $\mathbf{F} = \nabla f$

for some real-valued function f .

KORKAR KERKER SAGA

Theorem (The Fundamental Theorem of Calculus for Line **Integrals**. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\mathsf{F} = \nabla f$ and suppose $\gamma : \mathbb{R}^1 \to \mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \nabla f = f(\vec{b}) - f(\vec{a}).$

KORKAR KERKER DRAM

If $\mathbf{F} = \nabla f$ for some f, then we call F a Conservative Vector Field or an Exact Vector Field

and f is called a **Potential** of F

The function $P(\vec{x}) = -f(\vec{x})$ is the **Potential Energy** of the field F.

> Conservative Vector Field: $\mathbf{F}(x, y) = (2xy, x^2 + 2y)$ Nonconservative Example $\mathbf{F}(x, y) = (x, x + 1)$

> > **KORKAR KERKER SAGA**

Application: **Conservation of Energy**

Suppose $g(t)$ represents the position of an object of varying mass $m(t)$ in space at time t.

> The velocity vector of the object is $\mathbf{v} = \mathbf{g}'(t)$. The Force acting on the object at position $g(t)$ is

$$
\mathbf{F}(\mathbf{g}(t)) = [m(t)\mathbf{v}(t)]' = m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t)
$$

Then

$$
\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{v}(t)
$$

= $[m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t)] \cdot \mathbf{v}(t)$
= $m'(t)\mathbf{v}(t) \cdot \mathbf{v}(t) + m(t)\mathbf{v}'(t) \cdot \mathbf{v}(t)$
= $m'(t)s^2(t) + m(t)s'(t)s(t)$

where $s(t) = |\mathbf{v}(t)| = \text{speed at time } t$.

KORK EXTERNE PROVIDE

To Show:
$$
s'(t)s(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t)
$$

Start with $s^2(t) = |\mathbf{v}(t)|^2 = \mathbf{v}(t) \cdot \mathbf{v}(t)$

Differentiate each side with respect to t :

$$
2s(t)s'(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t) + \mathbf{v}(t) \cdot \mathbf{v}'(t) = 2\mathbf{v}'(t) \cdot \mathbf{v}(t)
$$

Thus $s'(t)s(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t)$
and

$$
\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^{2}(t) + m(t)s'(t)s(t)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Application: Conservation of Energy

(a)
$$
\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^2(t) + m(t)s'(t)s(t)
$$

We'll use the scalar *v* for the scalar *s*
so $\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)v^2(t) + m(t)v'(t)v(t)$

(b)
$$
m(t)
$$
 = Constant implies $m' = 0$
so $\mathbf{F}(g(t)) \cdot g'(t) = mv(t)v'(t)$

$$
\int_{a}^{b} mv(t)v'(t) dt = \frac{mv(t)^{2}}{2} \bigg|_{t=a}^{t=b}
$$

KE K K Ø K K E K K E K V R K K K K K K K K

Application: Conservation of Energy

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve γ .

Let g be a parametrization of curve γ and $v(t) = g'(t)$. Then the work done in moving the object is

$$
\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2
$$
 (Change in Kinetic Energy)

If F is a conservative field, then we can also compute work done by $\int_\gamma \mathsf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) = \textbf{Change in Potential Energy}$ Equating the two expressions for work, we have $\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$ $p(\vec{b}) + \frac{1}{2}m|v(t_b)|^2 = p(\vec{a}) + \frac{1}{2}m|v(t_a)|^2$ where \vec{a} and \vec{b} are any 2 points So Sum of Potential and Kinetic Energy is Constant Law of Conservation of Total Energy

Arc Length

Let $g:\mathbb{R}^1\to\mathbb{R}^n$ be defined on $a\leq t\leq b.$ Then the image of g is a curve γ with length $L(\gamma)=\int_a^b|g'(t)|\,dt.$ Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \le t \le 2\pi$ $\overline{\mathbf{3}}$ \cdot 2 \mathbf{I} $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{5\pi}{4}$ $\frac{3\pi}{2}$ $\frac{7\pi}{4}$ 2π $g'(t) = (1 - \cos t, \sin t)$ $|g'(t)| = \sqrt{(1-\cos t)^2 + \sin^2 t} = \sqrt{1-2\cos t + \cos^2 t + \sin^2 t} =$ $\overline{2-2\cos t} = \sqrt{2(1-\cos t)} = \sqrt{2(2\sin^2(t/2))} = 2\sin(t/2)$ 2π $L(\gamma) = \int_0^{2\pi} 2\sin(t/2) dt = -4\cos(t/2)$ $= 8$ $\overline{}$ 0

KOD KARD KED KED A GAA

Other Formulations

$$
L(\gamma) = \int_a^b |g'(t)| \, dt
$$

If a curve is given by $y = f(x), a \le x \le b$, then let $g(t) = (t, f(t))$ so $|g'(t)| = |(1, f'(t))| = \sqrt{1 + [f'(t)]^2}$

If $g(t) = (h_1(t), h_2(t))$, then $|g'(t)| = \sqrt{[h'_1]^2 + [h'_2]^2}$.

KORKARYKERKER OQO

Arc Length Parametrization

Let γ be a curve parametrized by $g(t)$ for $t_0 \le t \le t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t. Then arc length function is $s = s(t) = \int_{t_0}^t |g'(t)| dt = \int_{t_0}^t |x(t)| dt$ If $|g'(t)|=1$ for all t, then we say the **curve is parametrized by** arc length

Moving along the curve with uniform speed of 1 means that at time s we are at a point s units along the curve.

KORKAR KERKER SAGA

Example 1: Unit Circle:
$$
g(t) = (\cos t, \sin t), 0 \le t \le 2\pi
$$

\nExample 2 Helix: $g(t) = \left(\frac{a \cos t}{\sqrt{a^2 + b^2}}, \frac{a \sin t}{\sqrt{a^2 + b^2}}, \frac{bt}{\sqrt{a^2 + b^2}}\right)$.
\nThen $g'(t) = \left(\frac{-a \sin t}{\sqrt{a^2 + b^2}}, \frac{a \cos t}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}\right)$.
\nand $|g'(t)| = \sqrt{\frac{a^2 \sin^2 t + a^2 \cos^2 t + b^2}{a^2 + b^2}} = \sqrt{\frac{a^2 + b^2}{a^2 + b^2}} = 1$

Mass of a Weighted Curve **Density** (μ) is mass per unit length

Total Mass \sim $\sum \mu (point) \times$ Length of short piece of curve

Total **Mass** = $\int \mu(g(t)) |g'(t)| dt$

KORKARYKERKER OQO

Total Mass:
$$
\int \mu(g(t))|g'(t)| dt
$$

\nExample Spacecurve $g(t) = (\sin t, \cos t, t^2), 0 \le t \le 2\pi$
\nHere $g'(t) = (\cos t, -\sin t, 2t)$
\nso $|g'(t)| = \sqrt{\cos^2 t + \sin^2 t + 4t^2} = \sqrt{1 + 4t^2}$
\n $\int_{t^2/2}^{t^2/2} \int_{t^2/2}^{t^2/2} e^{-2t^2} dt$
\nSuppose $\mu(x, y, z) = x^2 + y^2 + \sqrt{z} - 1$
\nThen $\mu(g(t)) = \mu(\sin t, \cos t, t^2) = \cos^2 t + \sin^2 t + \sqrt{t^2} - 1$
\n $= 1 + t - 1 = t$
\nThus $\text{Mass} = \int_0^{2\pi} t\sqrt{1 + 4t^2} dt$
\n $= \frac{1}{12}(1 + 4t^2)^{3/2}\Big|_0^{2\pi} = \frac{1}{12}[(1 + 16\pi^2)^{3/2} - 1]$

Surface of Revolution

KORKARYKERKER OQO

Volume =
$$
\int_a^b \pi [f(x)]^2 dx
$$

\nSurface Area =
$$
\int_a^b 2\pi \sqrt{1 + [f(x)]^2} dx
$$

\nSuppose curve has parametrization $g : \mathbb{R}^1 \to \mathbb{R}^2$, $t_0 \le t \le t_1$
\n $g(t) = (x(t), y(t))$ with $g(t_0) = (a, f(a))$ and $g(t_1) = (b, f(b))$.
\nVolume =
$$
\int_{t_0}^{t_1} \pi [y(t)]^2 x'(t) dt
$$

\nSurface Area =
$$
\int_{t_0}^{t_1} 2\pi y(t) |g'(t)| dt
$$

Kロト K部 K K ミト K ミト 「ミ」 の R (^)

Example Revolve Semicircle of radius r about horizontal axis.

 $\qquad \qquad \exists x \in \{x \in \mathbb{R} \mid x \in \mathbb{R} \}$ Ω

イロト イ押ト イヨト イヨト

 Ω