MATH 223: Multivariable Calculus

Class 29: November 18, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notes on Assignment 26 Assignment 27 Weighted Curves and Surfaces of Revolution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Here

You May Bring One Sheet (Two-Sided) of Notes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Today:

Conservative Vector Fields and Conservation of Energy Weighted Curves and Surfaces of Revolution

Monday, November 26: Normal Vectors and Curvature Following Wednesday: Flow Lines, Divergence and Curl

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

INTEGRATION OF VECTOR FIELDS $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$

 $\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$

What is Meaning of $\int_{\mathcal{D}} \mathbf{F}$?

For Now: \mathcal{D} is a one-dimensional set in \mathbb{R}^n \mathcal{D} is a curve parametrized by a function $g: \mathbb{R}^1 \to \mathbb{R}^n$ on an interval $a \leq t \leq b$ We denote the image of g by γ Definition The Line Integral of **F** over γ is

$$\int_{\gamma} \mathbf{F} \cdot d\vec{x} = \int_{a}^{b} \mathbf{F}(g(t)) \cdot g'(t) \, dt$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

<u>Theorem</u> The value of the line integral $\int_{\gamma} \mathbf{F}$ is independent of the parametrization of γ but in general is dependent on the curve itself.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For some vector fields, the line integral $\int_{\gamma} \mathbf{F}$ depends only on the endpoints of the curve. In particular, this is true of \mathbf{F} is a gradient field; that is,

$$\mathbf{F} = \nabla f$$

for some real-valued function f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (The Fundamental Theorem of Calculus for Line Integrals. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\mathbf{F} = \nabla f$ and suppose $\gamma : \mathbb{R}^1 \to \mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \nabla f = f(\vec{b}) - f(\vec{a}).$

If $\mathbf{F} = \nabla f$ for some f, then we call \mathbf{F} a **Conservative Vector Field** or an **Exact Vector Field**

and f is called a **Potential** of **F**

The function $P(\vec{x}) = -f(\vec{x})$ is the **Potential Energy** of the field **F**.

Conservative Vector Field: $\mathbf{F}(x, y) = (2xy, x^2 + 2y)$ Nonconservative Example $\mathbf{F}(x, y) = (x, x + 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Application: Conservation of Energy

Suppose $\mathbf{g}(t)$ represents the position of an object of varying mass m(t) in space at time t.

The velocity vector of the object is $\mathbf{v} = \mathbf{g}'(t)$. The Force acting on the object at position g(t) is

$$\mathbf{F}(\mathbf{g}(t)) = [m(t)\mathbf{v}(t)]' = m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t)$$

Then

$$\begin{aligned} \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) &= \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{v}(t) \\ &= \left[m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t) \right] \cdot \mathbf{v}(t) \\ &= m'(t)\mathbf{v}(t) \cdot \mathbf{v}(t) + m(t)\mathbf{v}'(t) \cdot \mathbf{v}(t) \\ &= m'(t)s^2(t) + m(t)s'(t)s(t) \end{aligned}$$

where $s(t) = |\mathbf{v}(t)| = \mathbf{speed}$ at time t.

・ロト・日本・モート モー シタウ

To Show:
$$s'(t)s(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t)$$

Start with $s^2(t) = |\mathbf{v}(t)|^2 = \mathbf{v}(t) \cdot \mathbf{v}(t)$

Differentiate each side with respect to t:

$$\begin{split} 2s(t)s'(t) &= \mathbf{v}'(t)\cdot\mathbf{v}(t) + \mathbf{v}(t)\cdot\mathbf{v}'(t) = 2\mathbf{v}'(t)\cdot\mathbf{v}(t)\\ & \text{Thus } s'(t)s(t) = \mathbf{v}'(t)\cdot\mathbf{v}(t)\\ & \text{and} \end{split}$$

$$\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^2(t) + m(t)s'(t)s(t)$$

Application: Conservation of Energy

(a)
$$\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^2(t) + m(t)s'(t)s(t)$$

We'll use the scalar v for the scalar s
so $\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)v^2(t) + m(t)v'(t)v(t)$

(b)
$$m(t) = \text{Constant implies } m' = 0$$

so $\mathbf{F}(g(t)) \cdot g'(t) = mv(t)v'(t)$

$$\int_{a}^{b} mv(t)v'(t) \, dt = \frac{mv(t)^{2}}{2} \Big|_{t=a}^{t=b}$$

・ロト・(型ト・(型ト・(型ト))

Application: Conservation of Energy

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve γ .

Let g be a parametrization of curve γ and v(t) = g'(t). Then the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2-rac{1}{2}m|v(t_a)|^2$$
 (Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) =$ Change in Potential Energy Equating the two expressions for work, we have $\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$ $p(\vec{b}) + \frac{1}{2}m|v(t_b)|^2 = p(\vec{a}) + \frac{1}{2}m|v(t_a)|^2$ where \vec{a} and \vec{b} are any 2 points So Sum of Potential and Kinetic Energy is Constant Law of Conservation of Total Energy

Arc Length

Let $q: \mathbb{R}^1 \to \mathbb{R}^n$ be defined on $a \leq t \leq b$. Then the image of g is a curve γ with length $L(\gamma) = \int_{a}^{b} |g'(t)| dt$. Example: Cycloid: $g(t) = (t - \sin t, 1 - \cos t), 0 \le t \le 2\pi$ 3 , 2 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{5\pi}{4}$ $\frac{3\pi}{2}$ $\frac{7\pi}{4}$ 2π $q'(t) = (1 - \cos t, \sin t)$ $|q'(t)| = \sqrt{(1 - \cos t)^2 + \sin^2 t} = \sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} =$ $\sqrt{2 - 2\cos t} = \sqrt{2(1 - \cos t)} = \sqrt{2(2\sin^2(t/2))} = 2\sin(t/2)$ $L(\gamma) = \int_0^{2\pi} 2\sin(t/2) dt = -4\cos(t/2) \Big|^{2\pi} = 8$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Other Formulations

$$L(\gamma) = \int_{a}^{b} |g'(t)| dt$$

If a curve is given by $y = f(x), a \le x \le b$, then let g(t) = (t, f(t))so $|g'(t)| = |(1, f'(t)| = \sqrt{1 + [f'(t)]^2}$ If $g(t) = (h_1(t), h_2(t))|$, then $|g'(t)| = \sqrt{[h'_1]^2 + [h'_2]^2}$.

Arc Length Parametrization

Let γ be a curve parametrized by g(t) for $t_0 \le t \le t_1$ With $\vec{x}(t) = g(t), \vec{x}$ is position at time t.

Then arc length function is $s = s(t) = \int_{t_0}^t |g'(t)| dt = \int_{t_0}^t |x(t)| dt$ If |g'(t)| = 1 for all t, then we say the curve is parametrized by arc length

Moving along the curve with uniform speed of 1 means that at time s we are at a point s units along the curve.

Example 1: Unit Circle:
$$g(t) = (\cos t, \sin t), 0 \le t \le 2\pi$$

Example 2 Helix: $g(t) = \left(\frac{a \cos t}{\sqrt{a^2+b^2}}, \frac{a \sin t}{\sqrt{a^2+b^2}}, \frac{bt}{\sqrt{a^2+b^2}}\right)$.
Then $g'(t) = \left(\frac{-a \sin t}{\sqrt{a^2+b^2}}, \frac{a \cos t}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right)$.
and $|g'(t)| = \sqrt{\frac{a^2 \sin^2 t + a^2 \cos^2 t + b^2}{a^2+b^2}} = \sqrt{\frac{a^2+b^2}{a^2+b^2}} = 1$

Mass of a Weighted Curve Density (μ) is mass per unit length

Total Mass $\sim \sum \mu(point) \times$ Length of short piece of curve

Total Mass = $\int \mu(g(t)) |g'(t)| dt$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Total Mass :
$$\int \mu(g(t))|g'(t)| dt$$

Example Spacecurve $g(t) = (\sin t, \cos t, t^2), 0 \le t \le 2\pi$
Here $g'(t) = (\cos t, -\sin t, 2t)$
so $|g'(t)| = \sqrt{\cos^2 t + \sin^2 t + 4t^2} = \sqrt{1 + 4t^2}$
 $\int_{0}^{0} \int_{0}^{0} \int_{0}$

Surface of Revolution

S is a surface in \mathbb{R}^3 obtained by rotating a plane curve about a straight line in the plane. Simplest Case: Rotate y = f(x) about x-axis. У y = f(x)h x 0 а ds Volume = $\int_{a}^{b} \pi [f(x)]^{2} dx$ Surface Area = $\int_{a}^{b} 2\pi \sqrt{1 + [f(x)]^2} dx$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{aligned} \mathsf{Volume} &= \int_a^b \pi \left[f(x) \right]^2 \, dx \\ \mathsf{Surface} \; \mathsf{Area} &= \int_a^b 2\pi \sqrt{1 + \left[f(x) \right]^2} \, dx \\ \mathsf{Suppose} \; \mathsf{curve} \; \mathsf{has} \; \mathsf{parametrization} \; g: \mathbb{R}^1 \to \mathbb{R}^2, t_0 \leq t \leq t_1 \\ g(t) &= (x(t), y(t)) \; \mathsf{with} \; g(t_0) = (a, f(a)) \; \mathsf{and} \; g(t_1) = (b, f(b)). \\ \mathsf{Volume} &= \int_{t_0}^{t_1} \pi \left[y(t) \right]^2 x'(t) \, dt \\ \mathsf{Surface} \; \mathsf{Area} &= \int_{t_0}^{t_1} 2\pi y(t) |g'(t)| \, dt \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example Revolve Semicircle of radius r about horizontal axis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

イロト イポト イヨト イヨ