MATH 223: Multivariable Calculus

Class 28: November 16, 2022

KORKARYKERKER POLO

Notes on Assignment 25 Assignment 26 Integrals and Derivatives on Curves

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Independent Project:

Opportunity to Study Topic in Depth

10 – 12 Hours of Work

5 - 8 Pages

Due: Friday, December 9 (In Class) **Extension to Monday, December 12 Possible**

Announcements

Chapter 7: Integrals and Derivatives on Curves

Today: Line integral

Next Topics: Weighted Curves and Arc Length Surfaces of Revolution Normal Vectors and Curvature

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Integrals So Far

Real Valued Functions: $f: \mathbb{R}^n \to \mathbb{R}^1$ Iterated Integral Multiple Integral

Vector Valued Functions

$$
(\mathbf{A}): f := \mathbb{R}^1 \to \mathbb{R}^n
$$

$$
f(t) = (f_1(t), f_2(t), ... f_n(t))
$$
so $\int_a^b f(t) dt = (\int_a^b f_1(t), \int_a^b f_2(t), ..., \int_a^b f_n(t))$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

(B):VECTOR FIELDS $F: \mathbb{R}^n \to \mathbb{R}^n$

 $\mathbf{F}(\vec{x}) = (F_1(\vec{x}), F_2(\vec{x}), ..., F_n(\vec{x}))$

What is Meaning of $\int_{\mathcal{D}}\textsf{F}?$

Today: D is a one-dimensional set in \mathbb{R}^n $\mathcal D$ is a curve defined by a function $g:\mathbb R^1\to \mathbb R^n$ on an interval $a \leq t \leq b$ We denote the **image** of g by γ Definition The Line Integral of F over γ is

$$
\int_{\gamma} \mathbf{F} \cdot d\vec{x} = \int_{a}^{b} \mathbf{F}(g(t)) \cdot g'(t) dt
$$

KORKAR KERKER SAGA

Then
$$
\mathbf{F}(g(t)) = \mathbf{F}(\cos t, \sin t) = (\cos t, \sin t \cos^2 t)
$$
 and
\n $g'(t) = (-\sin t, \cos t)$
\nHence $\mathbf{F}(g(t)) \cdot g'(t) = (\cos t, \sin t \cos^2 t) \cdot (-\sin t, \cos t) =$
\n $-\sin t \cos t + \sin t \cos^2 t \cos t = -\sin t \cos t + \sin t \cos^3 t$
\nso $\int_{\gamma} \mathbf{F} = \int_0^{\pi/2} (-\sin t \cos t + \sin t \cos^3 t) dt$
\n $= \left[\frac{\cos^2 t}{2} - \frac{\cos^4 t}{4}\right]_0^{\pi/2} = 0 - 0 - \frac{1}{2} + \frac{1}{4} = -\frac{1}{4}$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ... 299

Alternative Notation for $n = 2$ $q(T) = (q_1(t), q_2(t)) = (x(t), y(t))$ $$ $\int_{\gamma} \mathbf{F} \cdot d\vec{x} = \int_{\gamma} (F_1 dx + F_2 dy)$ In our example, $\int_{\gamma} (x dx + yx^2 dy)$

KID KA KERKER KID KO

<u>Example</u>: Find $\int_\gamma \textbf{F}$ where $\textbf{F}(x,y) = (2xy, x^2 + 2y)$ and γ is the graph of $y = x^2$ from $x = 0$ to $x = 3$.

Solution: First, find a parametrization of γ . Here $g(t) = (t, t^2), 0 \le t \le 3$ will work. Then $g'(t) = (1, 2t)$ and $\mathbf{F}(g(t)) = F(t, t^2) = (2t^3, t^2 + 2t^2) = (2t^3, 3t^2)$ so $\mathsf{F}(g(t)) \cdot g'(t) = 2t^3 + 6t^3 = 8t^3$

and
$$
\int_{\gamma} \mathbf{F} = \int_0^3 8t^3 dt = 2t^4 \bigg|_0^3 = 162.
$$

KORK EXTERNE PROVIDE

What If We Used A Different Parametrization?

$$
F(x, y) = (2xy, x^2 + 2y)
$$

Example: Let $h(t) = (\sqrt{t}, t)$ on $0 \le t \le 9$

Then
$$
h'(t) = (\frac{1}{2\sqrt{t}}, 1)
$$

Here
$$
\mathbf{F}(h(t)) = \mathbf{F}((\sqrt{t}, t)) = (2t\sqrt{t}, t + 2t) = (2t^{3/2}, 3t)
$$

$$
\int_{\gamma} \mathbf{F} = \int_0^9 [W] dt = \int_0^9 4t dt = 2t^2 \bigg|_0^9 = 162
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Theorem The value of the line integral $\int_\gamma \boldsymbol{\mathsf{F}}$ is independent of the parametrization of γ but in general is dependent on the curve itself.

Proof: Use Change of Variable Formula; see text.

KORKARYKERKER POLO

For some vector fields, the line integral $\int_\gamma \textbf{F}$ depends only on the endpoints of the curve.

Theorem (The Fundamental Theorem of Calculus for Line **Integrals**. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\mathsf{F} = \nabla f$ and suppose $\gamma : \mathbb{R}^1 \to \mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \nabla f = f(\vec{b}) - f(\vec{a}).$

KORKAR KERKER DRAM

Theorem (The Fundamental Theorem of Calculus for Line **Integrals**. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\textsf{\textbf{F}}=\nabla f$ and suppose $\gamma:\mathbb{R}^1\to\mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \nabla f = f(\vec{b}) - f(\vec{a}).$ Proof: Let q be any parametrization of γ . with $q(0) = \vec{a}$ and $q(1) = \vec{b}$. Thus $\mathbb{R}^1 \to g \to \mathbb{R}^n \to f \to \mathbb{R}^1$ Use Our Old Friend The Chain Rule: $[f(g(t))]' = f'(g(t)) \cdot g'(t)$ $= \nabla f(g(t)) \cdot g'(t)$ $= \mathbf{F}(g(t)) \cdot g'(t)$ Hence $\int_{\gamma} \mathbf{F} = \int_0^1 \mathbf{F}(g(t)) \cdot g'(t) dt$ $=\int_0^1 [f(g(t))]^{\prime} dt$ $= [f(g(t))]$ $|0\rangle$ 1 $= f(g(1)) - f(g(0)) = f(\vec{b}) - f(\vec{a})$ $= f(g(1)) - f(g(0)) = f(\vec{b}) - f(\vec{a})$

Theorem (The Fundamental Theorem of Calculus for Line **Integrals**. Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuously differentiable and let $\textsf{\textbf{F}}=\nabla f$ and suppose $\gamma:\mathbb{R}^1\to\mathbb{R}^n$ is a continuous curve with endpoints \vec{a} and \vec{b} . Then $\int_{\gamma} \mathbf{F} = \int_{\gamma} \mathbf{F} \nabla f = f(\vec{b}) - f(\vec{a}).$ Example: $f(x,y) = x^2y + y^2$ so $\mathbf{F} = \nabla f = (2xy, x^2 + y)$ let γ be any curve from (0,0) to (4,2) Then \int_{γ} $\bm{\mathsf{F}} = f(4, 2) - f(0, 0) = 4^2 \times 2 + 2^2 - (0 + 0) = 36$

KORKAR KERKER SAGA

If $\mathbf{F} = \nabla f$ for some f, then we call F a Conservative Vector Field

and f is called a **Potential** of F Many Applications of the Line Integral **Work**

Position x along a line segment of a moving object is given by $x = q(t)$ where $q(0) =$ START and $q(T) =$ END.

Other Physical Applications of Line Integrals

- \blacktriangleright Mass of a Wire
- \triangleright Center of Mass and Moments of Inertia of a Wire:
- Magnetic Field Around a Conductor (Ampere's Law): The line integral of a magnetic field \bf{B} around a closed path C is equal to the total current flowing through the area bounded by the contour C

Other Physical Applications of Line Integrals

Voltage Generated in a Loop

(Faraday's Law of Magnetic Induction).

The electromotive force ϵ induced around a closed loop C is equal to the rate of the change of magnetic flux Ψ passing through the loop.

Applications in Economics

Buhr, Walter; Wagner, Josef

Working Paper Line Integrals In Applied Welfare Economics: A **Summary Of Basic Theorems**

Volkswirtschaftliche Diskussionsbeiträge, No. 54-95

Provided in Cooperation with:

Fakultät III: Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht, Universität Siegen

[Link to Paper](https://www.econstor.eu/handle/10419/118747)

KORK ERKER ADAM ADA

An Important Example: Exponential Probability Density Function

KORK EXTERNE PROVIDE

Evaluate
$$
1 - \int_{x=0}^{3} \int_{y=0}^{3-x} e^{-x} e^{-y} dy dx
$$

\n
$$
= 1 - \int_{0}^{3} e^{-x} \left[-e^{-y} \Big|_{y=0}^{3-x} \right] dx
$$
\n
$$
= 1 - \int_{0}^{3} e^{-x} \left[-e^{3-x} + 1 \right] dx
$$
\n
$$
= 1 - \int_{0}^{3} (e^{-x} - e^{-3}) dx
$$
\n
$$
= 1 - \left[-e^{-x} - e^{-3} x \right]_{x=0}^{3}
$$
\n
$$
1 - \left[-e^{-3} - 3e^{-3} + 1 + 0 \right] = 1 - \left[1 - \frac{4}{e^{3}} \right] = \frac{4}{e^{3}} \approx .199
$$

 $=$

Probability Density Function

A real-valued function p such that $p(\vec{x}) \geq 0$ for all \vec{x} and $\int_S p = 1$ where S is the set of all possibilities.

KORKARYKERKER POLO

Example 2: $p(x) = 2 - 2x$ on [0,1] More likely to choose small numbers than larger numbers \mathbf{y}) Problem: Find the probability of picking a number less than 1/2. 1/2 $\int_0^{1/2} (2 - 2x) dx = (2x - x^2)$ $= (1 - \frac{1}{4})$ $(\frac{1}{4}) - (0 - 0) = \frac{3}{4}$ 0 A probability density function on a set S in \mathbb{R}^n is a continuous non-negative real-valued function $p:S\to\mathbb{R}^1$ such that $\int_S pdV = 1$ If an experiment is performed where S is the set of all possible

outcomes, then the probability that the outcome lies in a particular subset T is $\int_T p(\vec{x}) dV$.

Example: Suppose two numbers b and c are chosen at random between 0 and 1.

What is the probability that the quadratic equation $x^2 + bx + c = 0$ has a real root?

Solution: Choosing b and c is equivalent to choosing a point (b, c) from the unit square S with $p(\vec{x}) = 1$ (**Uniform Density**) Then $\int_S p(\vec{x}) = \int_S 1 = area(S) = 1$. Now $x^2 + bx + c = 0$ has solution $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$ 2 For real root, need $b^2-4c\geq 0$ or $c\leq \frac{b^2}{4}$ 4 Let $T=\{(b,c):c\leq\frac{b^2}{4}\}$ $\frac{p}{4}$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\int_T p(\vec{x}) = \int_{x=0}^1 \int_{y=0}^{x^2/4} 1 \, dy \, dx = \int_{x=0}^1$ x^2 $rac{x^2}{4} dx = \frac{x^3}{12}$ $=\frac{1}{16}$ 12 120 $\begin{array}{cc} \mathbf{y} & & \\ & \mathbf{0.5} & & \mathbf{S} \end{array}$ 0.5 0.5

General Exponential Probability Distribution

$$
p(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0, \lambda > 0
$$

Easy to Show:

$$
\int_0^\infty \lambda e^{-\lambda x} \, dx = 1
$$
 so it is a probability distribution

Mean
$$
\int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}
$$

Prob(Bulb life ≥ 3) = 1 – $\int_3^\infty \lambda e^{-\lambda x} dx = 1 + e^{-\lambda x}$ ∞ 3 $= 1 - e^{-3\lambda}$ Prob(2 lights have life ≥ 3) = $e^{-3\lambda}(1+3\lambda)$ More than b hours: $e^{-3b\lambda}(1+b\lambda)$

KORKARYKERKER POLO