MATH 223: Multivariable Calculus

Class 26: April 20, 2022

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Notes on Assignment 24 Assignment 25 Improper Integrals and Probability Density Functions

KORK EXTERNE PROVIDE

Announcements

Today: Improper Integrals Applications in Probability and Statistics

Wednesday: Line Integrals Friday: Weighted Curves and Surfaces of Revolution

Exam 3: Wednesday, November 30

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\int_{-1}^{\infty} \int_{1}^{2} f(x, y) \, dy \, dx = \lim_{b \to \infty} \int_{-1}^{b} \int_{1}^{2} f(x, y) \, dy \, dx
$$

$$
I = \lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 = \lim_{a \to 0^+} \left[2 - 2\sqrt{a} \right] = 2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
=\lim_{a\to 0^+}(2\pi-2\pi a)=2\pi
$$

KORKARYKERKER POLO

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Improper Integrals

Let $\{B_{\delta}\}\$ be a family of bounded sets B_{δ} that expands to cover all of the set B. We say $\int_{P} f(x) dV$ is defined as an improper integral if the limit $\int_{B} f(\mathbf{x}) dV = \lim_{R} \int_{R} f(\mathbf{x}) dV$ is finite and independent of the family $\{B_{\delta}\}\$ used to define it. If the limit exists (as a finite number), we say that the improper integral converges to that value. If the limit fails to exist, we say the improper integral diverges.

KO K K Ø K K E K K E K V K K K K K K K K K

An Important Example: Exponential Probability Density Function

$$
\int_0^\infty e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx = \lim_{b \to \infty} \left[-e^{-x} \Big|_{x=0}^b \right]
$$

$$
= \lim_{b \to \infty} \left[-e^{-b} - (-e^0) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{e^b} \right] = 1
$$

KORK EXTERNE PROVIDE

Evaluate
$$
1 - \int_{x=0}^{3} \int_{y=0}^{3-x} e^{-x} e^{-y} dy dx
$$

\n
$$
= 1 - \int_{0}^{3} e^{-x} \left[-e^{-y} \Big|_{y=0}^{3-x} \right] dx
$$
\n
$$
= 1 - \int_{0}^{3} e^{-x} \left[-e^{3-x} + 1 \right] dx
$$
\n
$$
= 1 - \int_{0}^{3} (e^{-x} - e^{-3}) dx
$$
\n
$$
= 1 - \left[-e^{-x} - e^{-3} x \right]_{x=0}^{3}
$$
\n
$$
1 - \left[-e^{-3} - 3e^{-3} + 1 + 0 \right] = 1 - \left[1 - \frac{4}{e^{3}} \right] = \frac{4}{e^{3}} \approx .199
$$

 $=$

Kロト K個 K K ミト K ミト 「 ミー の R (^

Probability Density Function

A real-valued function p such that $p(\vec{x}) \ge 0$ for all \vec{x} and $\int_S p = 1$ where S is the set of all possibilities.

KORKARYKERKER POLO

Example 2: $p(x) = 2 - 2x$ on [0,1] More likely to choose small numbers than larger numbers \mathbf{y}) Problem: Find the probability of picking a number less than $1/2$. 1/2 $\int_0^{1/2} (2 - 2x) dx = (2x - x^2)$ $=(1-\frac{1}{4}$ $(\frac{1}{4}) - (0 - 0) = \frac{3}{4}$ A probability density function on a set S in \mathbb{R}^n is a continuous non-negative real-valued function $\rho: \mathcal{S} \rightarrow \mathbb{R}^1$ such that $\int_S pdV = 1$ If an experiment is performed where S is the set of all possible

outcomes, then the probability that the outcome lies in a particular subset T is $\int_{\mathcal{T}} p(\vec{x}) dV$.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 $2Q$

Need to find
$$
A = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx
$$

$$
A^{2} = \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right)
$$

$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}-y^{2}}{2}} dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dy dx
$$

Switch To Polar Coordinates:
$$
A^2 = \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} e^{-\frac{r^2}{2}} r \, d\theta \, dr
$$

$$
A^{2} = 2\pi \int_{r=0}^{\infty} r e^{-\frac{r^{2}}{2}} dr = 2\pi \lim_{b \to \infty} \int_{r=0}^{b} r e^{-\frac{r^{2}}{2}} dr
$$

$$
=2\pi \lim_{b \to \infty} \left[-e^{-\frac{r^2}{2}} \right]_0^b = 2\pi \lim_{b \to \infty} \left[-\frac{1}{e^{b^2/2}} + \frac{1}{e^0} \right] = 2\pi \times 1 = 2\pi
$$

Thus $A^2 = 2\pi$ so $A = \sqrt{2\pi}$

$$
\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \ dx = \sqrt{2\pi}
$$

To get a probability density, let $p(x) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-\frac{x^2}{2}}$ 2 This density is called the **Standard Normal Density**

KO K K Ø K K E K K E K V K K K K K K K K K

Example: Suppose two numbers b and c are chosen at random between 0 and 1. What is the probability that the quadratic equation $x^2 + bx + c = 0$ has a real root? Solution: Choosing b and c is equivalent to choosing a point (b, c) from the unit square S with $p(\vec{x}) = 1$ (Uniform Density) Then $\int_S p(\vec{x}) = \int_S 1 = \text{area}(S) = 1$. Now $x^2 + bx + c = 0$ has solution $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$ 2 For real root, need $b^2-4c\geq 0$ or $c\leq \frac{b^2}{4}$ 4 Let $\mathcal{T} = \{(b, c) : c \leq \frac{b^2}{4}\}$ $\frac{5}{4}$ } 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\int_{\mathcal{T}} p(\vec{x}) = \int_{x=0}^{1} \int_{y=0}^{x^2/4} 1 \, dy \, dx = \int_{x=0}^{1}$ x^2 $rac{x^2}{4} dx = \frac{x^3}{12}$ $=$ $\frac{1}{12}$ 12 120 S 0.5 0.5 $\qquad \qquad \exists \quad \mathbf{1} \quad \math$ OQ

General Exponential Probability Distribution

$$
p(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0, \lambda > 0
$$

Easy to Show:

$$
\int_0^\infty \lambda e^{-\lambda x} dx = 1
$$
 so it is a probability distribution

Mean
$$
\int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}
$$

Prob(Bulb life ≥ 3) = 1 – $\int_3^\infty \lambda e^{-\lambda x} dx = 1 + e^{-\lambda x}$ ∞ 3 $= 1 - e^{-3\lambda}$ Prob(2 lights have life ≥ 3) = $e^{-3\lambda}(1+3\lambda)$ More than *b* hours: $e^{-3b\lambda}(1+b\lambda)$

KORKARYKERKER POLO