
MATH 223: Multivariable Calculus

Class 26: November 11, 2022

Assignment 24 (New Due Date)

Announcements

Review Improper Integrals:

$$\int_{1}^{\infty} \frac{1}{x^{n}} dx$$

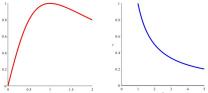
Description Due Today

This Week:
Change of Variable
Leibniz Rule
Improper Integrals
Application to Probability

Change of Variable aka Method of Substitution

A common technique in the evaluation of integrals is to make a change of variable in the hopes of simplifying the problem of determining an antiderivatives

Example: Evaluate
$$\int_{x=0}^{x=2} \frac{2x}{1+x^2} dx$$


Let $u = 1 + x^2 \mid x = 0 \to u = 1 + 0^2 = 1$

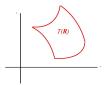
The $du = 2xdx \mid x = 2 \to u = 1 + 2^2 = 5$

$$\int_{-\infty}^{x=2} \frac{2x}{1+x^2} dx = \int_{-\infty}^{u=5} \frac{1}{u} du = \ln 5 - \ln 1 = \ln 5$$

$$\int_{x=0}^{x=2} \frac{2x}{1+x^2} dx = \int_{u=1}^{u=5} \frac{1}{u} du$$

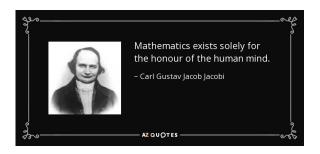
Let's look at what is happening geometrically:

Not only does the function change, but also the region of integration.


The region of integration changes from an interval of length 2 to an interval of length 4.

The interval also moves to a new location.

In computing mutitiple integrals, the corresponding change in the region may be more complicated.


By a **change of variable**, we will mean a vector function T from \mathbb{R}^n to \mathbb{R}^n . It is convenient to use different letters to denote the spaces; e.g, $T: \mathbb{U}^n \to \mathbb{R}^n$

Carl Gustav Jacob Jacobi

December 10, 1804 - February 18, 1851

For further information see his Biography

Jacobi's Theorem

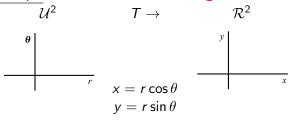
Let $\mathcal R$ be a set in $\mathbb U^n$ and $T(\mathcal R)$ its image under T; that is, $T(\mathcal R) = \{T(\vec u) : \vec u \text{ is in } \mathcal R\}$ Suppose $f: \mathbb R^n \to \mathbb R^1$ is a real-valued function. Then, under suitable conditions,

$$\int_{T(\mathcal{R})} f(\vec{x}) dV_{\vec{x}} = \int_{\mathcal{R}} f(T(\vec{u})) |detT'(\vec{u})| dV_{\vec{u}}$$

- T is continuous differentiable
- lacktriangle Boundary of ${\cal R}$ is finitely many smooth curves
- ightharpoonup T is one-to-one on interior of \mathcal{R}
- ▶ The Jacobian Determinant det T' is non zero on interior of \mathcal{R} .
- ▶ The function f is bounded and continuous on $T(\mathcal{R})$

$$\int_{\mathcal{T}(\mathcal{R})} f(\vec{x}) dV_{\vec{x}} = \int_{\mathcal{R}} f(\mathcal{T}(\vec{u})|det\mathcal{T}'(\vec{u}))|dV_{\vec{u}}$$

In our example:
$$u=1+x^2$$
 so $x=\sqrt{u-1}$ Thus $T(u)=\sqrt{u-1}=(u-1)^{1/2}$ so $T'(u)=\frac{1}{2}(u-1)^{-1/2}=\frac{1}{2\sqrt{u-1}}$
$$\int_0^2 \frac{2x}{1+x^2} dx = \int_{T(\mathcal{R})} f(\vec{x}) dV_{\vec{x}} = \int_1^5 f(T(u)|detT'(u)|du$$


Now
$$f(T(\vec{u}) = \frac{2T(u)}{1 + (T(u))^2} = \frac{2\sqrt{u-1}}{1 + u - 1} = \frac{2\sqrt{u-1}}{u}$$

$$\det T'(u) = \left| \frac{1}{2\sqrt{u - 1}} \right| = \frac{1}{2\sqrt{u - 1}} \text{ so } f(T(\vec{u})\det T'(u) = \frac{1}{u}$$

$$\text{so } \int_0^2 \frac{2x}{1 + x^2} dx = \int_1^5 \frac{2\sqrt{u - 1}}{u} \frac{1}{2\sqrt{u - 1}} du = \int_1^5 \frac{1}{u} du$$

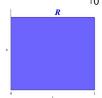
Example: Polar Coordinate Change of Variable

$$T(r,\theta) = (r\cos\theta, r\sin\theta)$$

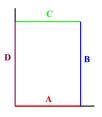
$$T' = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$
 so $\det T' = r \cos^2 \theta + r \sin^2 \theta = r$

Thus $\int_{T(R)} f(x, y) dx dy = \int_{R} f(r \cos \theta, r \sin \theta) r dr d\theta$

$$\int_{\mathcal{T}(R)} f(x, y) \, dx \, dy = \int_{R} f(r \cos \theta, r \sin \theta) r \, dr \, d\theta$$


Example:
$$f(x,y) = x^2 + y^2$$

 $T(R) = \text{Half Disk} = \{(x,y) : -1 \le x \le 1, 0 \le y \le \sqrt{1-x^2}\}$


$$I = \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2) \, dy \, dx$$

Describe Region in Polar Coordinates: $0 \le r \le 1, 0 \le \theta \le \pi$

$$I = \int_{\theta=0}^{\pi} \int_{r=0}^{1} r^2 r dr d\theta = \int_{\theta=0}^{\pi} \frac{r^4}{4} \Big|_{0}^{1} d\theta = \int_{\theta=0}^{\pi} \frac{1}{4} d\theta = \frac{\pi}{4}$$

Look At This Transformation More Closely

$$T(B)$$

$$\downarrow$$

$$T(C)$$

$$T(A)$$

$$A: 0 \le r \le 1, \theta = 0$$

$$x = r \cos \theta = r \cos 0 = r$$

$$y = r \sin \theta = r \sin 0 = 0$$

$$B: r = 1, 0 \le \theta \le x$$

$$x = r \cos \theta = \cos \theta$$

$$y = r \sin \theta = \sin \theta$$

$$B: r = 1, 0 \le \theta \le \pi$$

$$x = r \cos \theta = \cos \theta$$

$$y = r \sin \theta = \sin \theta$$

$$C: 0 \le r \le 1, \theta = \pi$$

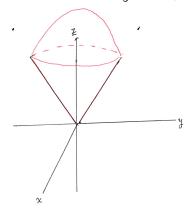
$$x = r \cos \theta = r \cos \pi = -r$$

$$y = r \sin \theta = r \sin \pi = 0$$

$$D: r = 0, 0 \le \theta \le \pi$$

$$x = r \cos \theta = 0$$

$$y = r \sin \theta = 0$$


$$D: r = 0, 0 \le \theta \le \pi$$

$$x = r \cos \theta = 0$$

$$y = r \sin \theta = 0$$

Problem: Evaluate $\iiint_C \sqrt{x^2 + y^2 + z^2} dV$ where C is the ice cream cone $\{(x,y,z): x^2 + y^2 + z^2 \le 1, x^2 + y^2 \le \frac{z^2}{3}, z \ge 0\}$

Example: Spherical Coordinates

$$x = r \sin \phi \cos \theta \qquad T : (r, \phi, \theta) \rightarrow (x, y, z)$$

$$y = r \sin \phi \sin \theta \qquad \det T' = r^2 \sin \phi$$

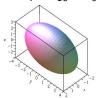
$$z = r \cos \phi$$

$$\underline{Problem}: \text{ Evaluate } \iiint_C \sqrt{x^2 + y^2 + z^2} dV$$

$$\text{where } C \text{ is the ice cream cone}$$

$$\{(x, y, z) : x^2 + y^2 + z^2 \le 1, x^2 + y^2 \le \frac{z^2}{3}, z \ge 0\}$$

$$z \ge 0 \text{ implies } \phi \le \frac{\pi}{2}$$

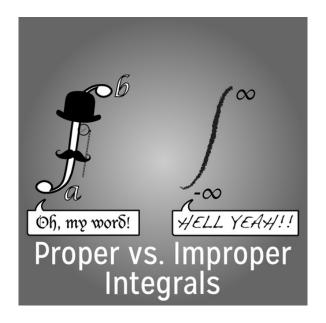

$$x^2 + y^2 + z^2 \le 1 \text{ implies } r \le 1$$

$$x^2 + y^2 \le \frac{z^2}{3} \text{ implies } r^2 \sin^2 \phi \le \frac{r^2 \cos^2 \phi}{3}$$

$$\text{implies } \tan^2 \phi \le \frac{1}{3} \text{ implies } \phi \le \frac{\pi}{6}$$

$$\int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi/6} \int_{r=0}^{1} \sqrt{r^2} r^2 \sin \phi \, dr \, d\phi \, d\theta$$

Example: Evaluate $\iiint_D z^2 dV$ where D is the interior of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$



STEP 1: Let
$$u=\frac{x}{2}, v=\frac{y}{4}, w=\frac{z}{3}$$
. Equation of the ellipsoid becomes $u^2+v^2+w^2=1$ (unit sphere) So $x=2u, y=4v, z=3w$ gives $T(u,v,w)=(2u,4v,3w)$ and $\begin{pmatrix} 2&0&0 \end{pmatrix}$

$$T' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ so det } T' = 2 \times 4 \times 3 = 24$$

Thus $\iiint_D z^2 = \iiint_D (3w)^2 (24) \, du \, dv \, dw = 216 \iiint_D w^2 \, du \, dv \, dw$

STEP 2: Switch to Spherical Coordinates: $u = r \sin \phi \cos \theta$, $v = r \sin \phi \sin \theta$, $w = r \cos \phi$ 216 $\iiint w^2 du dv dw = 216 <math>\iiint (r \cos \phi)^2 r^2 \sin \phi dr d\phi d\theta$ $= 216 \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi dr d\phi d\theta$ $= (216)(2\pi) \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi dr d\phi$ $= (216)(2\pi) \frac{1}{5} \int_{\phi=0}^{\pi} \cos^2 \phi \sin \phi d\phi$ $= \frac{(216)(2\pi)}{5} \left[-\frac{\cos^3 \phi}{3} \right]_{\phi=0}^{\pi} = \frac{(216)(2\pi)}{5} \frac{2}{3} = \frac{288\pi}{5}$

Improper Integrals

Setting $\int_{\mathcal{B}} f \ dV$ where \mathcal{B} is a subset of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}^1$

Two Types:

(I): \mathcal{B} is unbounded

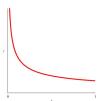
(II) \mathcal{B} is bounded but f is unbounded

Type I Examples $\mathcal{B} = \mathsf{First} \; \mathsf{Quadrant}$

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dy \, dx \qquad \int_{0}^{\infty} \int_{0}^{\infty} f(x,y) \, dy \, dx \qquad . \int_{-1}^{\infty} \int_{1}^{2} f(x,y) \, dy \, dx$ $\int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} f^{*}(r,\theta) r \, d\theta \, dr \qquad \int_{r=0}^{\infty} \int_{\theta=0}^{\pi/2} f^{*}(r,\theta) r \, d\theta \, dr$

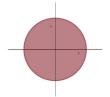
$$\int_0^\infty \int_0^\infty f(x, y) \, dy \, dx$$
$$\int_{r=0}^\infty \int_{\theta=0}^{\pi/2} f^*(r, \theta) r \, d\theta \, dx$$

 \mathcal{B} is infinite strip



$$\int_{-1}^{\infty} \int_{1}^{2} f(x, y) \, dy \, dx$$

$$\int_{-1}^{\infty} \int_{1}^{2} f(x, y) dy dx = \lim_{b \to \infty} \int_{-1}^{b} \int_{1}^{2} f(x, y) dy dx$$


Type II Examples Classic Case

$$I = \int_0^1 \frac{1}{\sqrt{x}} \, dx$$

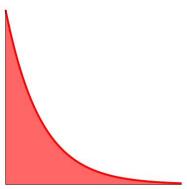
$$I = \lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 = \lim_{a \to 0^+} \left[2 - 2\sqrt{a} \right] = 2$$

Type II Examples In \mathbb{R}^2 , $f(x,y)=\frac{1}{\sqrt{x^2+y^2}}$ on unit disk

In Polar Coordinates:

$$\int_0^1 \int_0^{2\pi} \frac{1}{r} \, r \, d\theta \, dr = \lim_{a \to 0^+} \int_a^1 \int_0^{2\pi} \, d\theta \, dr = \lim_{a \to 0^+} \int_a^1 2\pi dr$$

$$= \lim_{a \to 0^+} (2\pi - 2\pi a) = 2\pi$$



Improper Integrals

Let $\{B_{\delta}\}$ be a family of bounded sets B_{δ} that expands to cover all of the set B. We say $\int_{B} f(\mathbf{x}) dV$ is defined as an **improper integral** if the limit $\int_{B} f(\mathbf{x}) dV = \lim_{B_{\delta}} \int_{B} f(\mathbf{x}) dV$ is finite and independent of the family $\{B_{\delta}\}$ used to define it. If the limit exists (as a finite number), we say that the improper integral **converges** to that value. If the limit fails to exist, we say the improper integral **diverges**.

An Important Example: **Exponential Probability Density Function**

$$\int_0^\infty e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx = \lim_{b \to \infty} \left[-e^{-x} \Big|_{x=0}^b \right]$$
$$= \lim_{b \to \infty} \left[-e^{-b} - (-e^0) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{e^b} \right] = 1$$

