MATH 223: Multivariable Calculus

Class 20: October 28, 2022

KO KA KO KERKER KONGK

All Online

Notes on Assignment 18 Assignment 19 [Ludwig Otto Hesse](https://mathshistory.st-andrews.ac.uk/Biographies/Hesse/)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Exam 2: Wednesday, November 2 No Office Hours Today

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

KORK EXTERNE PROVIDE

Second Derivative Test For Real-Valued Functions of Several Variables

Involves Second Order Partial Derivatives

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition: If f is a twice differentiable function from \mathbb{R}^n to \mathbb{R}^1 , then the **Hessian Matrix** is the $n \times n$ matrix of second order partial derivatives of f

For example, if $f:\mathbb{R}^3\to\mathbb{R}^1$ so $w=f(x,y,z)$, then the Hessian $\mathcal H$ for f is

$$
\mathcal{H}(f) = \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}
$$

Note that if f is twice continuously differentiable, then the mixed partials are equal: $f_{xy} = f_{yx}, f_{xz} = f_{zx}, f_{yz} = f_{zy}$ so the Hessian matrix is symmetric.

KORKAR KERKER ST VOOR

Otto Ludwig Hesse April 22, 1811 – August 4, 1874

 290

È

メロトメ 御 トメ 差 トメ 差 ト

The Second Derivative Test for real-valued functions of several variables replaces the condition $f''(c)$ being positive with the Hessian matrix being **positive definite**. It similarly uses the **negative definite** character of the Hessian matrix in place of the negativity of the second derivative.

KORKARYKERKER POLO

Definition A Positive Definite Matrix is an n by n symmetric matrix A such that $\mathbf{x} \cdot (A\mathbf{x}) > 0$ for all nonzero vectors \mathbf{x} in \mathbb{R}^n .

You will often see the equivalent condition $\mathbf{x}^T A \mathbf{x} > 0$ for $\mathbf{x} \neq \mathbf{0}$ where $\mathbf{x}^{\mathcal{T}}$ is the transpose of \mathbf{x} .

If the strict inequality sign $>$ is replaced by the weaker $>$, then the matrix is called positive semi-definite.

KORKAR KERKER SAGA

We define *negative definite* and *negative semi-definite* in an analogous manner, using \lt and \lt , respectively.

Example: Let
$$
A = \begin{pmatrix} 10 & 4 \\ 4 & 2 \end{pmatrix}
$$
.
\nWith $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, we have
\n $(x, y) \cdot (10x + 4y, 4x + 2y) = 10x^2 + 4xy + 4xy + 2y^2$
\n $= 10x^2 + 8xy + 2y^2$
\n $= (9x^2 + 6xy + y^2) + (x^2 + 2xy + y^2)$
\n $= (3x + y)^2 + (x + y)^2$

which is the sum of non-negative numbers and hence always greater than or equal to 0, but is positive unless both x and y are 0. Hence A is a positive definite matrix.

KO KKOKKEKKEK E DAG

A Matrix Which is Not Positive Definite

$$
A = \begin{pmatrix} 2 & 4 \\ 4 & 5 \end{pmatrix}
$$

With $x = -2$, $y = 1$, we have $\mathbf{x} \cdot (A\mathbf{x}) = -3$ so A is not positive definite. With $x = 2$, $y = 1$, we have $\mathbf{x} \cdot (A\mathbf{x}) = 29$ so A is not negative definite.

KO K K Ø K K E K K E K V K K K K K K K K K

An alternative, equivalent definition of a symmetric matrix being positive definite is that all its eigenvalues are positive.

Theorem

All real eigenvalues of a positive definite matrix are positive.

Proof: Let A be an $n \times n$ be a positive definite matrix with real eigenvalue λ .

If $\lambda = 0$, then there is a nonzero vector **x** such that A **x** = 0**x** = 0. But then, $x \cdot (Ax) = 0$ so A would not be positive definite. If $\lambda < 0$, then there is a nonzero vector x such that $A\mathbf{x} = \lambda \mathbf{x}$ in which case

$$
\mathbf{x} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (\lambda \mathbf{x}) = \lambda |\mathbf{x}|^2 < 0
$$

so again A is not positive definite.

Not only is the converse of this theorem true (all eigenvalues positive implies positive definiteness), but the eigenvalues of a symmetric matrix are always real.

Theorem

If all the eigenvalues of a symmetric matrix A are positive, then A is positive definite.

Proof: We make use of a result from linear algebra: A symmetric matrix is diagonalizable by an orthogonal matrix; that is, there is an orthogonal matrix Q such that $Q^T = Q^{-1}$ with $Q^T A Q = D$. where D is a diagonal matrix whose main diagonal entries are the eigenvalues of A:

$$
D = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \dots & & & & \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}
$$

KORKARYKERKER POLO

Let **x** be any nonzero vector and set $\mathbf{y} = Q^T\mathbf{x}$ so that $\mathbf{y}^T = \mathbf{x}^TQ$. Then

$$
\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (Q D Q^T) \mathbf{x} = (\mathbf{x}^T (Q) D (Q^T \mathbf{x}^T) = \mathbf{y}^T D \mathbf{y}
$$

but

$$
\mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = \sum_{i=1}^n \lambda_i y_i^2
$$

where $\mathbf{y}^{\mathcal{T}}=(y_1,y_2,...,y_n)$. Since **x** is a nonzero vector and Q is invertible, at least one y_i is nonzero. Hence

$$
\mathbf{x}^T A \mathbf{x} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = \sum_{i=1}^n \lambda_i y_i^2
$$

is the sum of non-negative terms, at least one of which is positive, so it is positive. Thus A is positive definite. \Box

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Now, we'll take a look at the occurrence of positive definite matrices in testing critical points for local extreme properties. The setting is a real -valued function $f:\mathbb{R}^n\to\mathbb{R}^1$ which has continuous partial derivatives of third order in an open set U containing a vector x_0 .

The Second-Order Taylor Theorem asserts that

$$
f(\mathbf{x_0} + \mathbf{h}) = f(\mathbf{x_0}) + \nabla f(\mathbf{x_0}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T \mathcal{H}(\mathbf{x_0}) \mathbf{h} + R_2(\mathbf{x_0}, \mathbf{h})
$$

and

$$
\lim_{\mathbf{h}\to 0}\frac{R_2(\mathbf{x_0},\mathbf{h})}{|\mathbf{h}|}=0
$$

(See Text for Proof)

Theorem

Second Derivative Test for Local Extrema.

Suppose $f:\mathbb{R}^n\to\mathbb{R}^1$ has continuous third order partial derivatives on a neighborhood of x_0 which is a critical point of f.

IF the Hessian H evaluated at x_0 is positive definite, then f has a relative minimum at x_0 .

KORKARYKERKER POLO

If the Hessian is negative definite, then there is a relative maximum at the critical point.

Here is the idea of the proof: Since x_0 is a critical point, $\nabla f(\mathbf{x}_0) = \mathbf{0}$ and by Taylor's Theorem

$$
f(\mathbf{x_0} + \mathbf{h}) = f(\mathbf{x_0}) + \frac{1}{2}\mathbf{h}^T \mathcal{H}(\mathbf{x_0})\mathbf{h} + R_2(\mathbf{x_0}, \mathbf{h})
$$

where the remainder term is negligible when **h** is very small. Thus

$$
f(\mathbf{x_0} + \mathbf{h}) \approx f(\mathbf{x_0}) + \frac{1}{2} \mathbf{h}^T \mathcal{H}(\mathbf{x_0}) \mathbf{h}.
$$

If the Hessian is positive definite, then the second term is positive for $h \neq 0$ so $f(x_0 + h) > f(x_0)$ when h is sufficiently small, making x_0 the location of a relative minimum. We will leave a formal proof and dealing with the negative definite case for the exercises. I

KELK KØLK VELKEN EL 1990

Example: Our Temperature Function $T(x, y) = 2x^2 + 4y^2 + 2x + 1$ Here $T_x(x, y) = 4x + 2$ and $T_y(x, y) = 8y$. Thus, the Hessian Matrix H is

$$
\mathcal{H} = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}
$$

whose eigenvalues are 4 and 8.

Both are positive so T has a minimum wherever the gradient is 0; that is, at $(-1/2,0)$.

KORKAR KERKER SAGA

$$
\frac{\text{Example: } T(x, y) = x^2 - y^2}{\nabla T(x, y) = (2x, -2y) \text{ so } \nabla T = \vec{0} \text{ at } (0, 0)}
$$

Thus, the Hessian Matrix $\mathcal H$ is

$$
\mathcal{H} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}
$$

whose eigenvalues are 2 and -2. Thus it is neither positive definite nor negative definite.

 $\mathbf{x} \cdot \mathcal{H} \mathbf{x}$ can be positive $(\mathbf{x} = (1,0))$ or negative $(\mathbf{x} = (0,1))$ so there is a **saddle point** at any point where ∇T is 0.

Example:
$$
f(x, y) = x^3 - y^3 - 2xy
$$

Here
$$
\nabla f = (3x^2 - 2y, -3y^2 - 2x)
$$

$$
\nabla f = \vec{0} \text{ when}
$$

$$
3x^2 = 2y \text{ and } 3y^2 = -2x
$$

The first equation gives $9x^4 = 4y^2$ and the second yields $y^2 = -\frac{2}{3}$ $\frac{2}{3}x$ Thus $9x^4 = 4(-\frac{2}{3})$ $(\frac{2}{3}x) = -\frac{8}{3}$ $\frac{8}{3}x$ so 9 $x^4 = -\frac{8}{3}$ $\frac{8}{3}$ x or 27 $x^4 + 8x = 0$; Hence $x(27x^3 + 8) = 0$ This gives two solutions: $x = 0, y = 0$ and $x = -\frac{2}{3}$ $\frac{2}{3}$, $y = \frac{2}{3}$ 3

Two Critical Points: $(0,0)$ and $(-2/3, 2/3)$

KORKARYKERKER POLO

Example:
$$
f(x, y) = x^3 - y^3 - 2xy
$$

\n
$$
\nabla f = (3x^2 - 2y, -3y^2 - 2x)
$$
\nTwo Critical Points: (0,0) and (-2/3, 2/3)
\nThe Hessian Matrix is

$$
\mathcal{H} = \begin{pmatrix} 6x & -2 \\ -2 & -6y \end{pmatrix}
$$

At (-2/3,2/3), Hessian is

$$
\mathcal{H} = \begin{pmatrix} -4 & -2 \\ -2 & -4 \end{pmatrix}
$$

whose eigenvalues are -2 and -6, both negative. Thus there is a relative maximum at $(-2/3,2/3)$,

KO K K Ø K K E K K E K V K K K K K K K K K

Example:
$$
f(x, y) = x^3 - y^3 - 2xy
$$

\n
$$
\nabla f = (3x^2 - 2y, -3y^2 - 2x)
$$
\nTwo Critical Points: (0,0) and (-2/3, 2/3)
\nThe Hessian Matrix is

$$
\mathcal{H} = \begin{pmatrix} 6x & -2 \\ -2 & -6y \end{pmatrix}
$$

At (0,0), Hessian is

$$
\mathcal{H} = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}
$$

whose eigenvalues are -2 and $+2$.

. Thus there is a saddle point at (0,0),

KO K K (D) K (E) K (E) K (E) K (D) K (O)

More About Saddle Points "Relative Maximum in One Direction, but Relative Minimum in Another Direction" How Do We Find These Directions? Look at the Eigenvectors! Take our example $f(x, y) = x^3 - y^3 - 2xy$ at the origin. The eigenvalue -2 has eigenvector of the form $(1,1)$ Consider $f(x, x) = x^3 - x^3 - 2x^2 = -2x^2$ has relative maximum at $x = 0$ The eigenvalue $+2$ has eigenvector of the form $(1,-1)$.

Consider $f(x, -x) = x^3 + x^3 + 2x^2 = 2x^3 + 2x^2 = 2x^2(1 + x)$ has relative minimum at $x = 0$

KORKAR KERKER SAGA

Graph of
$$
f(x, y) = x^3 - y^3 - 2xy
$$

 2990 $\mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P}$ ŧ

Next Time

Alternative Coordinate Systems for 3-Space

Rectangular **Cylindrical Spherical**

KORK EXTERNE PROVIDE