MATH 223: Multivariable Calculus

Class 18: October 24, 2022

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Notes on Assignment 16 Assignment 17 Extreme Values

Announcements

Friday's Class on Zoom For Next Monday: Examine Project Suggestions

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Wednesday, November 2

KOD KAR KED KED E YOUN

Kロトメ部トメミトメミト ミニのQC

Let D be a subset of \mathbb{R}^n and $f: D \to \mathbb{R}^1$ be a real-valued function with $\vec{x_0}$ a point in D.

Definition: f has an **absolute maximum** at \vec{x} if $f(\vec{x_0}) \ge f(\vec{x})$ for all \vec{x} in D.

Note: $>$ makes sense because we are comparing real numbers. f has a **relative maximum** at $\vec{x_0}$ if there is a neighborhood N around $\vec{x_0}$ such that $f(\vec{x_0}) \ge f(\vec{x})$ for all \vec{x} in N.

KORKAR KERKER E VOOR

Theorem: Let $\vec{x_0}$ be an **interior** point of D. If f is differentiable at $\vec{x_0}$ and f has a relative maximum or minimum at $\vec{x_0}$, then $f'(\vec{x_o}) = \nabla(\vec{x_o}) = \vec{0}$. Proof: Suppose f has a relative maximum at $\vec{x_0}$ Let \vec{u} be any unit vector in \mathbb{R}^n .

Then
$$
\frac{\partial f}{\partial \vec{u}} = \lim_{t \to 0} \frac{f(\vec{x_0} + t\vec{u}) - f(\vec{x_0})}{t}
$$

(a) Take
$$
\lim_{t \to 0^+} : \frac{-}{+} \le 0
$$

thus $\frac{\partial f}{\partial \vec{u}} = 0$ for all \vec{u}
(b) Take $\lim_{t \to 0^-} : \frac{-}{-} \ge 0$

Taking \vec{u} to be unit vectors gives $\nabla f(\vec{x_0}) = 0$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Theorem: f differentiable at relative extrema implies gradient is 0. The Theorem Has Its Limitations:

(1) The function can have an extreme value at a point where it is not differentiable.

Example: $f(x, y) = \sqrt{x^2 + y^2}$ has minimum at (0,0) but is not differentiable there.

$$
f_{x}(x, y) = \frac{x}{\sqrt{x^{2}+y^{2}}}, f_{y}(x, y) = \frac{y}{\sqrt{x^{2}+y^{2}}},
$$

KELK KØLK VELKEN EL 1990

Example: $f(x,y) = \sqrt{x^2 + y^2}$ has minimum at (0,0) but is not differentiable there. Analogue in Calculus I: alogue in Calculus
 $f(x) = \sqrt{x^2} = |x|$ 1.5 $\overline{.2}$ -1

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Theorem: f differentiable at relative extrema implies gradient is 0.

The Theorem Has Its Limitations:

(2) We can have $\nabla f(\vec{x_0}) = 0$ but no extreme point at $\vec{x_0}$

 $\nabla f(x, y) = (2x, 2y)$

There is a Maximum is one direction and a Minimum in another Saddle Point

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Quiz: Name a Famous Commercial Food Product That Exhibits a Saddle Point

KOD KAR KED KED E YOUN

Kロトメ部トメミトメミト ミニのQC

Definition: A point $\vec{x_0}$ in the domain of f is a **Critical Point** of f if (a) $\nabla f(\vec{x_0}) = \vec{0}$ or (b) ∇f does not exist at $\vec{x_0}$.

Extreme Values Can Occur at Critical Points or Points on the Boundary

KORKARRA ERKER SAGA

Example: Temperature Distribution on disk of radius 1 centered at origin is $T(x, y) = 2x^2 + 4y^2 + 2x + 1$. For Critical Points, examine $\nabla T = (4x + 2, 8y)$ $\nabla\, T = (0,0)$ only at $x=-\frac{1}{2}$ $\frac{1}{2}$, $y = 0$ which does lie inside the disk. Note $\mathcal{T}(-\frac{1}{2})$ $(\frac{1}{2},0)=2(\frac{1}{4})+4(0^2)+2(-\frac{1}{2})$ $(\frac{1}{2})+1=\frac{1}{2}$, and $\mathcal{T}(0,0)=1$.

Analyze Along Boundary:

 $x^2+y^2=1$ so $y^2=1-x^2$ and $T(x,y) = g(x) = 2x^2 + 4(1 - x^2) + 2x + 1 = -2x^2 + 2x + 5$ Thus $g'(x) = -4x + 2, g''(x) = -4$ so $x = \frac{1}{2}$ $\frac{1}{2}$ gives a maximum. $x=\frac{1}{2}$ $\frac{1}{2}$ gives $y^2 = 1 - \frac{1}{4} = \frac{3}{4}$ $\frac{3}{4}$ so $y = \pm$ $\sqrt{3}$ 2

red numbers are values of the function

イロトメ都トメミトメミト、ミー

 299

Parametrize Boundary

$$
x = \cos t, y = \sin t \text{ for } 0 \le t \le 2\pi
$$

$$
T(x,y) = 2x^2 + 4y^2 + 2x + 1
$$

= 2 cos² t + 4 sin² t + 2 cos t + 1
= 2 cos² t + 2 sin² t + 2 sin² t + 2 cos t + 1
= 2 + 2 sin² t + 2 cos t + 1 = 2 sin² t + 2 cos t + 3
= H(t)

 $H(0) = 2 \cdot 1 + 2 \cdot 0 + 3 = 5, H(\pi) = 2 \cdot 1 + 2 \cdot -1 + 3 = 1$ Now $H'(t) = 4 \sin t \cos t - 2 \sin t = 2 \sin t (2 \cos t - 1)$ so $H'(t) = 0$ at sin $t = 0$ or cos $t = \frac{1}{2}$ 2 The first condition gives $t = 0, t = \pi$, the second occurs when $t=\frac{\pi}{3}$ $\frac{\pi}{3}$.

Next Time:

Solving Constrained Optimization Problems Using Lagrange Multipliers

