MATH 223: Multivariable Calculus

"Last week, I taught you about mits...
Today, I'm going to introduce you
to the chain rule."

Let P = pain

t = time

Caleulus can be torture for math students...
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Today

Partial With Respect to a
Vector

Directional Derivative

Mean Value Theorem
Chain Rule



Partial With Respect to a Vector
f:R" = R
a point and v vector in R"
The partial derivative f,(a) of f at a if we approach a along vector
v

We want f,(a) = lim f(a+tv) —f(a)

t—0 t

Theorem: If f is differentiable at a, then

fu(a) =Vf(a) v



Theorem: If f : R" — R is differentiable at a, then
fu(@) = Vf(a)-v

Proof of Theorem:
(Case 1): v =0: Both sides are 0.
(Case 2): v#0:
Note: |v| # 0 so we can divide by |v| if necessary.
By differentiability of  at a, we have
f(x) — f(a) - Vf(a)-(x—a)

lim =0
x—a ‘x —a|

Set x=a-+tvsox—aisequivalenttot —0and x —a=tv
We have
im f(a+tv) —f(a) — Vf(a) - tv

=0
t—0 |tv]




im f(a+ tv) — f(a) — Vf(a) - tv

=0
t—0 |tv]

Now |tv| = |t]|v]
Can take t > 0 (Why?). So [tv| = t|v|
We can write limit as
im f(a+tv)—f(a) B tVf(a)-v ~0
t[v] t[v]

t—0

Factor out t from second term and multiply both sides by the
nonzero scalar |v| t to obtain

[im
t—0

[f(a + tv) — f(a)
t

—Vf(a)~v] =0



. f(a+ tv) — f(a)
tll—%[ ; —Vf(a)‘v] =0
implies
t”—% [f(a—i—tvt)— f(a)] _ Vi) v

But the left hand side is, by definition £,(a)



Directional Derivative
f:R" > R!
a point and v vector in R"
Find the directional derivative of f ata in the direction of the
vector v is

fu(a) where u = Y

vi
Rate of Change in Direction u is
Vf(a)-u=|Vf(a)|lulcosd = |Vf(a)|cosd

since [u| = 1.
Maximum rate of change occurs when cosf = 1; that is § = 0 so
pick u in the direction of the gradient.



Mean Value Theorem for f : R" — R1
If £ is differentiable at each point of a line segment S between a
and b, then there is a least point c on S such that

f(b) — f(a) = Vf(c) - (b—a)

Recall classic MVT from Single Variable Calculus:
If f: R — R is differentiable on a closed interval [a, b], then
there is at least on c inside the interval such that
f(b) —f(a) =f'(c)(b— a).



An Important Consequence of classic MVT:
Suppose f'(x) = g'(x) for all x in [a, b]. Then f(x) = g(x)+ C
for some constant C and all x in the interval.
Proof: Let H(x) = f(x) — g(x).
Then H'(x) = f'(x) — g’(x) = 0 for all x in the interval.
Now let x; < xp be any two points in the interval.
By MVT: H(2) — H(x1) = H'(¢)(x2 — x1) = 0(x2 — x1) = 0. Thus
H is a constant function: H(x) = C for all x.
So f(x) — g(x) = C and hence f(x) = g(x) + C.

The same argument shows

Vf = Vg implies f(x) = g(x) + C



The Cl)ain Rule

(gof) = g'(f(x)f'(x)
(pxm) (mxn)
matrix matrix

P X n matrix






Generalized Mean Value Theorem
b

-]

Rn



Proof of Generalized Mean Value Theorem

Define a new function g : [0,1] — R" by g(t) = a+ t(b — a)
Note g(0) = a and g(1) = b and g(t) lieson S and g'(t)=b —a

Consider the composition H(t) = f(g(t)) : [0,1] — R}
Apply Classic MVT to H:

H(1) - H(0) = H'(t)(1 - 0) = H'(z.)
but H(1) = f(g(1)) = f(b) and H(0) = f(g(0)) = f(a)
Thus f(b) — f(a) = H'(t.)

What is H'(t)? By Chain Rule: f'(g(t))g'(t) = Vf(g(t)) - (b—a)
Let C = g(t.). Then

f(b) — f(a) = H'(tc) = VF(C) - (b —a)



