MATH 223: Multivariable Calculus Vector Differential Calculus

Curvilinear Coordinates

Polar Coordinates (r, θ)

For any point $\mathbf{x} = (x, y)$ in the plane, there are numbers r and θ , called the *polar* coordinates of x such that

 $x = r \cos \theta$ $y = r \sin \theta$

Spherical Coordinates (r, ϕ , θ)

For any point $\mathbf{x} = (x, y, z)$ in three dimensional space, there are numbers r and θ and ϕ , called the *spherical coordinates* of **x** such that

 $x = r \sin \phi \cos \theta$ $y = r \sin \phi \sin \theta$ $z = r \cos \phi$

Cylindrical Coordinates(r, θ, z)

For any point $\mathbf{x} = (x, y, z)$ in three dimensional space, there are numbers r, θ and z called the *cylindrical coordinates* of \mathbf{x} such that

 $x = r \cos \theta$ $y = r \sin \theta$ z = z

Jacobian Matrices

	· 0)	$(\cos\theta)$	$-r\sin\theta$	0)	($\sin\phi\cos\theta$	$r\cos\phi\cos\theta$	$-r\sin\phi\sin\theta$
	$\frac{-r\sin\theta}{r\cos\theta}$	$\sin \theta$	$r\cos\theta$	0	•	$\sin\phi\sin\theta$	$r\cos\phi\sin\theta$	$r\sin\phi\cos\theta$
		0	0	1)	l	$\cos\phi$	$-r\sin\phi$	0)