MATH 223 Fall 2022 Assignment 16 Due: Monday, October 24

Reading

Read carefully Section 5.5 "Implicit Differentiation" in our text *Multivariable Calculus: A Linear Algebra Based Approach*.

Writing

Write out careful and complete solutions of Exercises 1, 2, and 3 below.

- Let f(x, y) = 2x² + 3y² be a real-valued function defined on the plane.
 (a) Let P be the point (5,4) and C the level curve of f containing P. Identify the nature of C: Is it a Circle? Parabola? Pair of Lines? Sketch a picture of C.
 (b) Use classic implicit differentiation or some other method to find an equation for the line L tangent to C at P.
 (c) Determine the gradient vector v of f at P.
 - (d) Show that this gradient vector is orthogonal to any vector lying along L.
- 2. Let g(x, y) = 2x² 3y² be a real-valued function defined on the plane.
 (a) Let P be the point (5,4) and C the level curve of g containing P. Identify the nature of C: Is it a Circle? Parabola? Pair of Lines? Sketch a picture of C.
 (b) Use classic implicit differentiation or some other method to find an equation for the line L tangent to C at P.
 (c) Determine the gradient vector v of g at P.
 (d) Show that this gradient vector is orthogonal to any vector lying along L.
- 3. (Williamson and Trotter) A spaceship traveling in the plane along a path such that at time $t \ge 0$, the ship is at position $g(t) = (3t^2, t^3)$. The intensity of gamma radiation at the point (x, y) in the plane is $I(x, y) = x^2 y^2$,

wherever $I(x, y) \ge 0$. Describe fully, using a labeled graph where appropriate, the following:

- (a) The level curve of *I* the ship is on at t = 1.
- (b) The path of the ship for $t \ge 0$.
- (c) The gradient vector of *I* at the ship's position when t = 1.
- (d) The ship's velocity vector at t = 1.

(e) The time – if there is one – when the ship stops increasing its radiation risk and begins its

race to safety. Does its course become more dangerous later on?