Finite Automata: in principle

Suppose that Σ is a finite alphabet.

1. Briefly describe how a **deterministic finite automaton** (DFA) over Σ acts, in terms of an edge-labeled digraph:
 (a) What in the graph corresponds to the finite set of **states** of the DFA?
 (b) What in the graph corresponds to the **transitions** of the DFA, and what rules apply to those transitions?
 (c) How do we mark the unique **start state** of the graph?
 (d) What special designation can each state have (or not have)?
 (e) Given a **string** of characters from Σ, describe how the DFA operates one character at a time, and what it means for the DFA to **accept** or **reject** the string.

2. Taking a step back, as an input/output machine, what does a DFA over Σ take as input? What are its possible outputs? Viewing this as a **function**, what are its domain and codomain?

3. Briefly explain why each string $x \in \Sigma^*$ must be either accepted or rejected (but not both!) by a DFA. What do we mean by the **language accepted by** a DFA?

4. Taking a further step back, how can we think of this whole process as giving us a function from the set of all DFA’s to $\mathcal{P}(\Sigma^*)$?

... and in practice

5. Consider the DFA labeled A on the back of this page.
 (a) Will this DFA accept or reject:
 (i) a string x that starts with 101;
 (ii) a string y that starts with 100;
 (iii) a string z that starts with 11;
 (iv) a string w that starts with 0?
 (b) Find a regular expression that produces the language accepted by A.

6. Consider the DFA labeled B on the back of this page.
 (a) Will this DFA accept or reject:
 (i) the string ε;
 (ii) the string 1000100;
 (iii) the string 00100100;
 (iv) the string 11100011?
 (b) Find a regular expression that produces the language accepted by B.

7. Consider the DFA labeled C on the back of this page.
 (a) Will this DFA accept or reject:
 (i) the string ε;
 (ii) the string 001;
 (iii) the string 001001;
 (iv) the string 00100100?
 (b) Find a regular expression that produces the language accepted by C.

8. Consider the DFA labeled D on the back of this page.
 (a) Will this DFA accept or reject:
 (i) the string ε;
 (ii) the string 1111;
 (iii) the string 00011;
 (iv) the string 001110?
 (b) Find a regular expression that produces the language accepted by D.
