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Introduction

Here is a collection of counting problems. Questions and suggestions Version: 15th February 2021,22:26

are welcome at per.w.alexandersson@gmail.com.

Exclusive vs. independent choice. Recall that we add

the counts for exclusive situations, and multiply the counts for

independent situations. For example, the possible outcomes of a dice

throw are exclusive:

(Sides of a dice) = (Even sides) + (Odd sides)

The different outcomes of selecting a playing card in a deck of cards

can be seen as a combination of independent choices:

(Different cards) = (Choice of color) · (Choice of value).

Labeled vs. unlabeled sets is a common cause for confusion.

Consider the following two problems:

• Count the number of ways to choose 2 people among 4 people.

• Count the number of ways to partition 4 people into sets of size 2.

In the first example, it is understood that the set of chosen people

is a special set — it is the chosen set. We choose two people, and

the other two are not chosen. In the second example, there is no

difference between the two couples. The answer to the first question

is therefore(
4
2

)
, counting the chosen subsets: {12, 13, 14, 23, 24, 34}.

The answer to the second question is

1
2!

(
4
2

)
, counting the partitions: {12|34, 13|24, 14|23}.

That is, the issue is that there is no way to distinguish the two sets

in the partition. However, now consider the following two problems:

• Count the number of ways to choose 2 people among 5 people.

• Count the number of ways to partition 5 people into a set of size 2
and a set of size 3.

In this case, the answer to both questions is (5
3). The reason for this

is that we can distinguish between the two sets in the partition in

the second question, for example, the set of size 2 is unique.

We always consider people to be unique, and therefore labeled.

This means that in a group of n people, we can talk about the first

person, the second person, and so on. In a group of n identical

objects, there is no á priori notion of the first object.

Trimmed down for CSCI 200!
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Overview of formulas

Every row in the table illustrates a type of counting problem, where

the solution is given by the formula. Conversely, every problem is a

combinatorial interpretation of the formula. In this context, a group

of things means an unordered set.

Problem Type Formula

Choose a group of k objects from n different

objects

Binomial coefficient

(
n

k

)

Partition n different objects into m labeled

groups, with ki elements in group i

Multinomial coefficients

(
n

k1, . . . , km

)

Partition n different objects into k non-

empty groups, where there is no order on the

sets

Partitions, Stirling numbers S(n, k)

Partition n different objects into k labeled

groups (which could be empty)

Multiplication principle kn

Partition n identical objects into m labeled

groups

Dots and bars

(
n + m − 1

m − 1

)

Same, but with non-empty groups Dots and bars

(
n − 1
m − 1

)

Order n different objects Permutations n!

Choose and order k different objects from n

different objects

Permutations
n!

(n − k)!

Choose and order n objects, where there are

ki identical objects of type i

Multinomial coefficients

(
n

k1, . . . , km

)

Choices for (X, Y ) if there are x choices for

X and, independently, y choices of Y

Multiplication-principle x · y

Number of elements in A ∩ B ∩ C Inclusion-exclusion

|A ∪ B ∪ C| = |A| + |B| + |C|
− |A ∩ B| − |A ∩ C| − |B ∩ C|
+ |A ∩ B ∩ C|
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Binomial- and multinomial coefficients

Whenever n ≥ 0 and 0 ≤ k ≤ n, we define the binomial coefficients

as Sometimes the notation C(n, k) for(
n
k

)
is used.

(
n

k

)
=

n!
k!(n − k)!

. (Binomial coefficients)

The binomial coefficients satisfy the following recursion: To choose k objects among
{1, 2, . . . , n}, we either exclude
n, and choose k objects among
{1, 2, . . . , n − 1} or we include n, and
choose additional k − 1 objects among
{1, 2, . . . , n − 1}.

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1
k − 1

)
. (1)

We have the binomial theorem:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k (Binomial theorem)

A generalization of the binomial coefficients are the multinomial

coefficients. Whenever k1 + k2 + . . . + kr = n, they are defined as(
n

k1, k2, . . . , kr

)
=

n!
k1! · · · kr !

. (Multinomial coefficients)

Stirling numbers

The Stirling numbers S(n, k) can be computed recursively via a

table, where every row is obtained from the previous via Proof: To partition {1, 2, · · · , n}, into
k groups, we either let n be in its own
group, and partition {1, 2, . . . , n − 1}
into k − 1 groups, or we partition
{1, 2, . . . , n − 1} into k groups and
choose which of the k groups n
belongs to.

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k).

and using the fact that S(n, 1) = S(n, n) = 1.

Counting problems

Problem. 1

You are creating a 4-digit pin code. How many choices are there in

the following cases?

(a) With no restriction.

(b) No digit is repeated.

(c) No digit is repeated, digit number 3 is a 0.

(d) No digit is repeated, and they must appear in increasing order.

(e) No digit is repeated, 2 and 5 must be present.

Problem. 2

How many shuffles are there of a deck of cards, such that A♥ is not A standard deck has 52 cards, divided
into four suits (♥, ♠, ♦, ♣). There
are 13 cards of each suit, 2, 3, . . . , 10,
J , Q, K, A, the Jack, Queen, King
and Ace

directly on top of K♥, and A♠ is not directly on top of K♠?

Problem. 3

How many different words can be created by rearranging the letters

in SELFIESTICK?
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Problem. 4

How many flags can we make with 7 stripes, if we have 2 white, 2
red and 3 green stripes?

Problem. 5

We have four different dishes, two dishes of each type. In how many

ways can these be distributed among 8 people?

Problem. 6

In how many ways can 8 people form couples of two?

Problem. 7

We go to a pizza party, and there are 5 types of pizza. We have

starved for days, so we can eat 13 slices, but we want to sample each

type at least once. In how many ways can we do this? Order does

not matter.

Problem. 8

How many rth order partial derivatives does f(x1, . . . , xn) have?

Problem. 9

How many integer solutions does x1 + x2 + · · · + xn = r have, with

xi ≥ 0?

Problem. 10

How many integer solutions does the equation

x1 + x2 + x3 + x4 = 15

have, if we require that x1 ≥ 2, x2 ≥ 3, x3 ≥ 10 and x4 ≥ −3?

Problem. 11

How many integer solutions are there to the system of inequalities

x1 + x2 + x3 + x4 ≤ 15, x1, . . . , x4 ≥ 0?

Problem. 12

Count the number of non-negative integer solutions to

3x1 + 3x2 + 3x3 + 7x4 = 22.

Problem. 13

Compute the number of surjections f : A → B if |A| = n and

|B| = k.

Problem. 14

You are going to an amusement park. There are four attractions,

(haunted house, roller coaster, a carousel, water ride). You buy 25
tokens. Each attraction cost 3 tokens each ride, except the roller

coaster that costs 5. Obviously, you want to ride each ride at least

once, but the order of the rides does not matter.
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In how many ways can you spend your tokens? You may have

some remaining tokens in the end of the day.

Problem. 15

At an amusement park, you pay for attractions using tokens. There

are five different attractions which cost 3 tokens each, and one

attraction which cost 5 tokens. You have 42 tokens and you want

to use all of them. How many different selections of attractions are

there?

Problem. 16

How many words can you create of length 6, from the letters a, b, c

and d if

• you must include each letter at least once, and

• a must appear exactly once.

Problem. 17

Eight different exam questions are to be distributed among three

students, such that each student receives at least one question.

However, two of the questions are very easy and must be given to

different students. In how many ways can this be done?

Problem. 18

Prove that S(n + 1, k + 1) ≥ S(n, k) whenever n ≥ 1 and 1 ≤ k ≤ n.

Problem. 19

How many words can be made by rearranging aabbccdd, such that

no ’a’ appears somewhere to the right of some ’c’?

Problem. 20

You have 2 copies of the letter ’A’ and and unlimited supply of the

letters ’B’, ’C’ and ’D’. How many words of length 10 can you

make from these, such that

• all the A’s are used

• the third letter is an A, and

• there is no B appearing between the A’s?

Mailbox-principle

Problem. 21

What is the maximum number of rooks you can place on an 8 × 8
chessboard so that no two rooks can attack each other?
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either increasingly or decreasingly?

Reading comprehension

To see the intricacies in combinatorial reasoning, we now review a

variety of counting problems.

Try to identify which of these choices allow for repetition, and

which are ordered and unordered. Before proceeding, review the

difference between labeled and unlabeled sets.

Words such as line, queue, list and shelf indicate an order, while

words such as set, group, pile and bag indicate unordered arrange-

ments. Additionally, people are always considered unique — no two

persons are alike and they have names. You need to be aware if

there are several sets, queues or groups involved: The two sets

{{a, b}, {c, d}} and {{d, c}, {a, b}}

are considered equal. However, the two arrangements (with named

sets)

A = {a, b}, B = {c, d} and A = {d, c}, B = {a, b}
are considered different. Note that this intricacy can only occur for

sets (or lists) of equal sizes.

Problem. 42

There are 8 people available. Count the number of ways

(a) to choose 6 of them and arrange them in a line.

(b) to choose 6 of them and place them into lines named A and B,

with 3 in each.

(c) to choose 6 of them and place them into two equal-sized unla-

beled lines.

(d) to choose 6 of them to make a group.

(e) to choose 6 of them and place them into groups named A and B,

with 3 in each.

(f) to choose 6 of them and make two equal-sized unlabeled groups.

(g) to choose 6 of them and make three equal-sized unlabeled

groups.

Problem. 43

There are 8 red balls available1. Count the number of ways 1 These are identical!

(a) to choose 6 of them and arrange them in a line.

(b) to choose 6 of them to make a group.

(c) to choose 6 of them and give them to three people, some might

not get any.
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(d) to choose 6 of them and give them to three people, each person

get at least one.

(e) to choose 6 of them and make three non-empty (unlabeled)

groups.

(f) to choose 6 of them and divide them into piles.

Problem. 44

There are 8 types2 of cookies available in a store. Count the number 2 This indicates that repetition is
allowed — the same type can be used
several times

of ways

(a) to pick 6 of them and arrange them in a line.

(b) to pick 6 of them and place them into lines named A and B,

with 3 in each.

(c) to pick 6 of them and place them into two equal-sized unlabeled

lines.

(d) to pick 6 of them to make a group.

(e) to pick 6 of them and place them into groups named A and B,

with 3 in each.

(f) to pick 6 of them and make two equal-sized unlabeled groups.

(g) to pick 6 of them and make three equal-sized unlabeled groups.

(h) For 10 people to choose a cookie type, and each type is selected

by at least one person.

Solutions

Solution. 1

(a) There are 4 independent choices, so 104.

(b) 10 · 9 · 8 · 7.

(c) Choose the remaining three: 9 · 8 · 7.

(d) (10
4 ).

(e) Pick two additional digits and count all permutations: (8
2) × 4!. These must be chosen in an unordered

fashion, since we later count all 4!
permutations of the unordered digits.

Solution. 2

It is easier to first count the number of forbidden shuffles. We have

two different types of forbidden arrangements, see Fig. 2. ♥ ♠

Figure 2: The total deck of cards, 52!,
and the two intersecting forbidden
subsets.

The number of decks with A♥ on top of K♥ is 51!, since we can

remove the A♥, shuffle the remaining 51 different cards, and then

place the ace of hearts on top of the king of hearts. In the same

manner, we have 51! forbidden decks involving A♠.

Finally, we need to count the number of elements in the intersec-

tion, i.e., decks where both of the forbidden configurations occur. We

Frank Swenton
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